Shreyas Mandre

University Associate Professor of Fluid-Structure Interaction
Department of Engineering, University of Cambridge
       

Surfactants

Surface tension of flowing soap films

Fluid Mechanics Surfactants

The surface tension of flowing soap films is measured with respect to the film thickness and the concentration of soap solution. We perform this measurement by measuring the curvature of the nylon wires that bound the soap film channel and use the measured curvature to parametrize the relation between the surface tension and the tension of the wire. We find that the surface tension of our soap films increases when the film is relatively thin or is made of soap solution of low concentration; otherwise, it approaches an asymptotic value of 30 mN/m.

Hydrodynamic signatures of stationary Marangoni-driven surfactant transport

Fluid Mechanics Surfactants

We experimentally study steady Marangoni-driven surfactant transport on the interface of a deep water layer. Using hydrodynamic measurements, and without using any knowledge of the surfactant physicochemical properties, we show that sodium dodecyl sulphate and Tergitol 15-S-9 introduced in low concentrations result in a flow driven by adsorbed surfactant. At higher surfactant concentration, the flow is dominated by the dissolved surfactant. Using camphoric acid, whose properties are a priori unknown, we demonstrate this method’s efficacy by showing its spreading is adsorption dominated.

Axisymmetric spreading of surfactant from a point source

Fluid Mechanics Surfactants

Guided by computation, we theoretically calculate the steady flow driven by the Marangoni stress due to a surfactant introduced on a fluid interface at a constant rate. Two separate extreme cases, where the surfactant dynamics is dominated by the adsorbed phase or the dissolved phase, are considered. We focus on the case where the size of the surfactant source is much smaller than the size of the fluid domain, and the resulting Marangoni stress overwhelms the viscous forces so that the flow is strongest in a boundary layer close to the interface.

Marangoni elasticity of flowing soap films

Fluid Mechanics Surfactants

We measure the Marangoni elasticity of a flowing soap film to be 22 mN/m irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed, and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows nondestructive measurement of flowing soap film elasticity and the value 22 mN/m is likely applicable to other similarly constructed flowing soap films.