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Abstract – How should a given amount of material be moulded into a cantilevered beam clamped
at one end, so that it will have the furthest horizontal reach? Here, we formulate and solve this
variational problem for the optimal variation of the cross-section area of a heavy cantilevered beam
with a given volume V , Young’s modulus E, and density ρ, subject to gravity g. We find that
the cross-sectional area should vary according a universal profile that is independent of material
parameters, with both the length and maximum reach-out distance of the branch that scale as
(EV/ρg)1/4, with a universal self-similar shape at the tip with the area of cross-section a∼ s3, s
being the distance from the tip, consistent with earlier observations of tree branches, but with a
different local interpretation than given before. A simple experimental realization of our optimal
beam shows that our result compares favorably with that of our observations. Our results for the
optimal design of slender structures with the longest reach are valid for cross-sections of arbitrary
shape that can be solid or hollow and thus relevant for a range of natural and engineered systems.

Copyright c© EPLA, 2012

Structural optimization for stiffness and strength has a
venerable history in biology [1] and technology [5], in the
context of both natural and man-made examples such as
trabecular bone [2], tree height [3], soft architectures [4]
and engineering [6,7], with simultaneous developments in
mathematical optimization [5]. A classical example of
such a question is that of designing a column with a
cross-section that maximizes its resistance to buckling
under compression [8] or under its own weight, as in a
tree [9], and has inspired the analysis of many related
problems [10,11], all of which focus on analyzing the
optimization of columns to buckling. Here we analyze a
complementary problem, that of maximizing the reach of
a cantilevered beam that projects out horizontally from
a support, much as a tree branch would. Of course,
the shape of tree branches is likely a consequence of
multiple considerations including structural support, mass
transport, light interception for photosynthesis etc. [12].
While multiple mechanisms like branching, variation of
leaf shape, etc. all play a role, one important function of
a branch is to reach further away from the main trunk
to better intercept sunlight. However, in the presence
of gravity, branches droop: the droop is small for short
stubby branches which are almost horizontal, but very

(a)E-mail: lm@seas.harvard.edu

pronounced for long slender branches. This raises a natural
question: given a certain volume of material, what is the
optimal variation of the cross-sectional shape of a branch
that has the maximum horizontal reach? Although the
direct connection to the shape of tree branches will require
a consideration of an objective function that depends
dynamically on multiple variables, here we take a first
step and study the structural optimization problem of
farthest reach by redistributing the mass of the branch
along its length. This problem is also of intrinsic interest as
it is one of the simplest non-linear problems in structural
optimization that combines geometry and mechanics in a
non-trivial setting: almost trivial to state, yet with many
subtleties as we shall see. Indeed, even at a minimal level,
given that there are two length scales in the problem:
i) an extrinsic one associated with the volume of the
material and ii) an intrinsic one associated with the
competition between elasticity and gravity, it is a priori
not obvious which combination of these two lengths does
the maximal reach scale with. In particular, since we do
not know a priori if the branch is weakly or strongly
deformed, we cannot be sure how to combine these two
scales. Here we formulate and solve this optimization
problem using a combined analytical-numerical method
and find that the solution has a universal solution that
is independent of material parameters for self-similar
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Fig. 1: A cantilevered branch showing the geometry and
notation: ŝ is the arc length, ŝ∈ (0, L), N̂ is the vertical shear
force, â is the cross-sectional area profile, θ is the angle of the
center line tangent with the horizontal direction.

cross-sections. Furthermore, we find that the tip of this
optimal beam points vertically downwards with a scale-
invariant singular behavior at its sharp tip. Our results
are consistent with available data on tree branch shapes
but with a fundamentally different interpretation.
For simplicity, we will assume that the branch is made

of an isotropic, homogeneous linearly elastic material with
a density ρ, Young’s modulus E, volume V subject to
gravity g. We will assume that the dominant mode of
deflection of the branch is via inextensional bending,
consistent with its slender aspect ratio. If the angle of the
center line tangent with the horizontal direction is θ(ŝ),
where ŝ is the arc-length coordinate measured from the
clamped support, the horizontal reach of the branch is

X(L) =

∫ L
0

cos θ(ŝ) dŝ, (1)

where L is the (as yet unknown) length of the middle
(neutral) axis of the branch (see fig. 1). Torque and force
balance on the beam yield the equations [13],

(
cEâ2(ŝ)θŝ(ŝ)

)
ŝ
+ N̂(ŝ) cos θ(ŝ) = 0,

N̂ŝ(ŝ)+ ρgâ(ŝ) = 0;
(2)

where cEâ2 is the bending stiffness of the branch of
unknown cross-sectional area profile â(ŝ), which is not
restricted to any particular shape, but can be hollow, solid,
polygonal or smooth etc. Our results of the shape of the
optimal beam are not limited to solid cross-sections or
indeed circular cross-sections, since it is only the area and
the second moment of the cross-section that enters the
analysis. Here we have chosen not to also let the cross-
section itself be a variable since there are highly singular
non-convex cross-sections that can arise as solutions even
in the simpler linear problem of maximizing the buck-
ling load [8,10]. Instead we choose a few representative
cross-sections starting with the simplest —a solid circular
cross-section. The dimensionless parameter c characterizes
the geometry of the cross-section; for a circular cross-
section, c= 1/(4π). Here N̂ is the vertical shear force, and
(·)ŝ ≡ d(·)/dŝ (see fig. 1). Since the weight of the branch
has to be supported by the vertical force at the clamped
end, we must further have

N̂(0) = ρgV. (3)

In addition, the boundary conditions associated with a
horizontally clamped base and a free tip are given by

θ(0) = 0, N̂(L) = 0, (â2θ̂ŝ)
∣∣
L
= 0. (4)

Then our nested optimization problem corresponds to
optimizing the reach of the branch subject to a given
volume and the equations of equilibrium that are treated
as constraints. Thus, we must determine â(ŝ) by maxi-
mizing the reach (1) with the equations of equilibria (2)
as constraints, so that the following Lagrangian suggests
itself:

Ω(â, L, θ, N̂ ; β̂, η̂) =

∫ L
0

cos θ dŝ+

∫ L
0

η̂(ŝ)(ρgâ+ N̂ŝ) dŝ

+

∫ L
0

β̂(ŝ)[cE(â2θŝ)ŝ+ N̂ cos θ] dŝ,

(5)

where β̂ and η̂ are Lagrange multipliers. It is important
to note here that although the equations of equilibrium
can themselves be derived from an elastic energy func-
tional, that functional does not enter into the formula-
tion of the optimal reach problem, even though the final
solution will obviously also minimize that energy (as it
satisfies the equations of equilibrium). Upon using the
scaled variables ŝ=L(1− s), â= (V/L)a, N̂ = (ρgV )N ,
β̂ = 1/(ρgV )β, η̂=L/(ρgV )η, and taking variations of the
functional (5) with respect to all the independent vari-
ables, respectively, we get the Euler-Lagrange equations

(a2θs)s+χN cos θ= 0,

Ns− a= 0,
(a2βs)s−χ(1+βN) sin θ= 0,

ηs+β cos θ= 0,

χη− 2aβsθs = 0,

(6)

where the dimensionless parameter χ= ρgL4/(cEV ) is an
(unknown) eigenvalue of the system. The problem as posed
is now independent of any material parameters, and allows
us to see that the characteristic length of our branch
L∼ (EV/ρg)1/4 is a combination of the intrinsic elastic-
gravity length E/ρg and the extrinsic length V 1/3.
With s= 0 being the free tip, s= 1 now corresponds

to the clamped end, so that the natural boundary condi-
tions(BCs) associated with variation of the functional (5)
along with (3), (4) read

(aβθsδa)
∣∣1
0
= 0, (−a2βsδθ+ a2βδθs)

∣∣1
0
= 0,

(ηδN)
∣∣1
0
= 0, N(0) = 0, N(1) = 1, (7)

cos θ(0) = 0, θ(1) = 0, (a2θs)
∣∣
0
= 0.

We see immediately that the condition on the angle of the
center line of the beam at the tip cosθ(0) = 0 in (7) implies
that θ→ π/2, i.e. the tip points vertically downwards.
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Intuitively, if the tip does not do so, by adding more
material there, it is possible to extend the beam a little
further in the horizontal direction.
As noted previously, there are two global natural scales

in the problem, an intrinsic one associate with the balance
between gravity and elasticity, and an extrinsic one asso-
ciated with a given volume. However, near the tip neither
of these can play any role locally and we expect a scale-
invariant asymptotic solution of (6) near the tip. Further-
more, the asymptotic behavior at the tip is also expected
to be singular, because both the branch weight driving
bending and the bending stiffness resisting it are functions
of the cross-sectional area which vanishes as we approach
the vertically oriented tip. In light of this, we may simplify
(6) in the neighborhood of the free tip θ= π/2−α, where
α� 1, by expanding terms in powers of α, which then
yields, at leading order,

(a2αs)s−χNα= 0, (8)

Ns− a= 0, (9)

(a2βs)s−χ(1+βN) = 0, (10)

ηs+βα= 0, (11)

χη+2aβsαs = 0 (12)

with the tip BCs from (7) that read

(aβαsδa)
∣∣
0
= 0, (13)

(a2βs)|0 = 0, (a2αs)
∣∣
0
= 0, N(0) = 0, (14)

where we have retained (13) entirely instead of (aβθs)|0 =
0 for reasons that will be clarified later. Looking for
a power-law form of the cross-section profile a= a0 s

p,
and noting that N(0) = 0, yields N = a0s

p+1/(p+1). On
substituting these expressions into (8), and balancing the
powers and coefficients, respectively, we obtain p= 3 and

α= α01s
n1 +α02s

n2 , n1,2 =
−5±√25+χ/a0

2
, (15)

where α01,02 are integration constants to be determined.
As both χ, a0 > 0, imposing the BC (a

2αs)|0 = 0, implies
that the negative power n2 <−5 must be discarded. Since
the homogenous part of (10) has the same structure as (8),
it follows that

β = β0s
n1 +βp, βp =− 4χ

a0(16a0+χ)
s−4, (16)

where β0 is an integration constant. Then, on inserting
a, N , α and β into (11) and (12) yields two different
expressions for the Lagrange multiplier η

η= α0

(
4χsn1−3

a0(n1− 3)(16a0+χ) −
β0 s

2n1+1

2n1+1

)
+ η0, (17)

η= 2n1α0

(
− 16 s

n1−3

16a0+χ
− a0n1β0 s

2n1+1

χ

)
. (18)

Equating (17) and (18) implies that the integration
constant η0 = 0. Since s

n1−3 term is dominant as s→ 0
(near the tip), and n1 is given by (15), this implies that
β0 = 0 and yields a0 = 9χ/64 and n1 = 1/3. Thus, the
only self-consistent power law solutions in the vicinity of
the tip are

a=
9χ

64
s3, N =

9χ

256
s4, α= α0s

1
3 ,

β =− 1024
117χ

s−4, η=−128α0
39χ

s−
8
3 .

(19)

Although we have used the BCs (14), we note that
(aβαs)|0 ∼ s−5/3 in fact blows up, i.e. (13) is not satisfied.
However, an appropriate transformation of the area a= bx

followed by the use of b instead of a as the independent
variable in the functional (5), changes neither (8)–(12) nor
the power law relations (19), but the BC (13) becomes

s3(x−1)/xs−4s−1s1/3 = 0 as s→ 0. (20)

Clearly, any x> 9/4 will satisfy (20), i.e. we must choose
our solutions from a function space carefully to ensure
differentiability. When the vanishing of the first variation
of a functional is used as the criterion to find the extrema,
the first variation must be well defined and non-divergent.
As seen from the divergence of (aβαs)0, the first variation
of our functional with respect to the cross-sectional area
a(s) is divergent indicating a singular dependence of our
functional in (6) on a(s). Formally, this singularity is
treated by simply using b instead of a as the independent
function.
Knowing the asymptotic self-similar singular solution

of the linearized problem near the tip, we can peel it
away to determine the remaining non-singular non-linear
solution, inspired by a similar procedure recently used to
solve singular linear eigenvalue problems [11]. Writing the
complete solution as the product of similarity solution (19)
and a new set of variables {ā, N̄ , ᾱ, β̄, η̄},

a=
9χ

64
s3ā, N =

9χ

256
s4N̄ , α= α0s

1
3 ᾱ,

β =− 1024
117χ

s−4β̄, η=−128α0
39χ

s−
8
3 η̄,

(21)

we require that as we approach the tip, {ā, N̄ , ᾱ, β̄, η̄}→
{1, 1, 1, 1, 1} as s→ 0. Away from the tip, on substi-
tuting (21) and θ= π/2−α into (6), and using a trans-
formed spatial variable t=−lns (see footnote 1) leads
to an algebraically complex, but numerically tractable

1By using t as the independent variable, we get an autonomous
linear system for which the normal modes are easily found.
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7th-order system of equations for the new variables

ā′ =−16e
t/3 sin(e−t/3α0ᾱ)(2āβ̄+ N̄(4β̄+ β̄′))

9α0ā(ᾱ− 3ᾱ′)(4β̄+ β̄′)
+
4 cos(e−t/3α0ᾱ)(4N̄ β̄− 13)

27ā(4β̄+ β̄′)
+ 3ā,

N̄ ′ = 4(N̄ − ā),

ᾱ′′ =
16et/3N̄ sin(e−t/3α0ᾱ)

9α0ā2
+
2ā′(ᾱ− 3ᾱ′)

3ā

+
51ᾱ′− 16ᾱ

9
,

β̄′′ =
4 cos(e−t/3α0ᾱ)(4N̄ β̄− 13)

9ā2
− ā

′(8β̄+2β̄′)
ā

+4β̄− 3β̄′,

η̄′ =
8

3

(
−η̄+ e

t/3N̄ sin(e−t/3α0ᾱ)
α0

)
,

(22)

where (·)′ ≡ d(·)/dt (with t= 0 corresponds to the clamped
base), along with the BCs (7) there that now read

β̄(0) = 0, ᾱ(0)− π

2α0
= 0, N̄(0) =

256

9χ
. (23)

To solve the above non-linear non-singular equations
away from the tip, we first determine a stable characteris-
tic direction of the non-singular system by inserting (19)
into (8)–(12), and perturb about the homogeneous BCs
so that ā= 1+ δā, N̄ = 1+ δN̄ , ᾱ= 1+ δᾱ, β̄ = 1+ δβ̄,
η̄= 1+ δη̄, and derive a linear set of ODEs that reads

32δā− 16δN̄ − 6δā′− 51δᾱ′+9δᾱ′′= 0,
−4δā+4δN̄ − δN̄ ′= 0,

72δā+16δN̄ +52δβ̄− 72δā′− 27δβ̄′− 9δβ̄= 0, (24)

8δᾱ+8δβ̄− 8δη̄− 3δη̄′= 0,
−4δā− 4δᾱ− 4δβ̄+4δη̄+12δᾱ′− δβ̄′= 0.

Substitution of the normal mode form,

δā= δā0e
qt, δN̄ = δN̄0e

qt, δᾱ= δᾱ0e
qt,

δβ̄ = δβ̄0e
qt, δη̄= δη̄0e

qt,
(25)

into (24) gives us 5 equations about the coefficients
{δā0, δN̄0, δᾱ0, δβ̄0, δη̄0}. For non-trivial solutions to
exist, the Jacobian has to vanish, resulting in a 6th-order
polynomial equation for the eigenvalue q whose solutions
are

q1 = 0, q2 =
1

3
, q3 = 1, q4 =

4

3
,

q5 =
2

3
(1−√105), q6 = 2

3
(1+
√
105).

Of these, the only viable mode corresponds to that
associated with the solution q5 < 0, since as we approach
the tip, t→∞ and limt→∞exp(q5t)→ 0, as required. The

corresponding stable eigenvector is given by




δā0

δN̄0

δᾱ0

δβ̄0

δη̄0



=




3
(
4575− 467√105) /5048
5
(−327+28√105) /631(
151− 11√105) /1262

3
(
951− 203√105) /2524

1



. (26)

Thus the asymptotic BCs for the non-linear system
that characterizes the non-singular part of the solution
{ā, N̄ , ᾱ, β̄, η̄} in the vicinity of the free tip is given by

{ā N̄ ᾱ ᾱ′ β̄ β̄′ η̄}= {1 1 1 0 1 0 1}
+∆{δā0 δN̄0 δᾱ0 q5δᾱ0 δβ̄0 q5δβ̄0 δη̄0},

(27)

where ∆ is an unknown perturbation magnitude at a fixed
position t close to the tip.
Finally, using (27) as an initial condition at a short

distance away from the tip in terms of the new vari-
ables in (21) we can now solve the non-linear problem
(6), (7) numerically using a shooting method to satisfy
the conditions β̄(0) = 0, ᾱ(0) = π/(2α0). This allows us
to determine the unknown constants α0 and ∆, as well
as the shape of the scaled branch cross-section a(s) and
droop θ(s). This calculation also yields the unknown
eigenvalue χ= ρgL4/(cEV )≈ 49.01, and the dimension-
less reach-out distance

∫ 1
0
cosθ ds≈ 0.84. Then the dimen-

sional length of the neutral axis of the optimal branch
L≈ 1.41(EV/ρg)1/4, and the maximum reach-out distance
in the horizontal direction X ≈ 1.18(EV/ρg)1/4 with a
relatively weak dependence on the volume and elastic
modulus of the material. Since material and geometrical
constants enter this problem only via χ, the scaled geomet-
rical quantities characterizing the shape of the branch are
all universal functions. In fig. 2(a), we show the cross-
section a(s), in fig. 2(b), we show the angle θ that the
center line makes with the horizontal, in fig. 2(c), we show
the bending moment a2θs and finally, in fig. 2(d) we show
the shape of the beam (for the case of an assumed circular
cross-section).
To test our predictions qualitatively, we used a 3D

printer (Objet Connex) to manufacture a polymeric
(TangoBlack) optimal beam with a circular cross-section
using our calculated optimal shape (fig. 3(b)). In
fig. 3(c), we show the theoretical and experimental shapes
for the parameter values V = 20 cm3, E = 0.63MPa,
ρ= 1150 kg/m

3
. The small discrepancy between the

theoretical longest reach 0.215m and the measured reach
of 0.211m is likely due to the expansion of the polymer as
it cures, which results in asymmetric cross-section, inho-
mogeneous density and Young’s modulus, and residual
strains.
To contrast our true optimal solution with those

associated with a prescribed cross-sectional profile,
we consider the simple cases of a uniform cylindri-
cal column and a right-circular cone. For cylinders,

14005-p4
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Fig. 2: (Colour on-line) (a) The dimensionless optimal cross-
sectional area a as a function of arc length s′ (s′ = 1− s),
determined by solving (21), (6). Near the tip (s= 0), a∼ s3
consistent with (19). (b) Under the influence of gravity, the
optimal branch is vertical at the tip, but deviates rapidly from
this as one moves towards the base. (c) The bending moment
a2θs increases monotonically from the tip towards the base,
where it has its maximum value. (d) A 3-dimensional depiction
of the optimal cross-section for the case when the cross-section
is a circular disc.
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Fig. 3: (Colour on-line) (a) Scaled deflection of the neutral
axes of the optimal branch with the furthest reach, compared
to the optimal cone and optimal cylinder. All scaled shapes
are universal (see text); the apparently shorter reach of the
optimal branch is a consequence of the larger value of L for
this solution. (b) Comparison of the droop of the optimal
branch with the longest reach and that of an optimal cone
and and an optimal cylinder for a given volume V = 20 cm3,
Young’s modulus E = 0.63MPa and density ρ= 1150 kg/m3.
(c) Comparison of the drooping shape of a branch made of a
polymer with our theoretical prediction; the small difference
between the two is due to the expansion of the polymer on
curing.

we let the scaled area of cross-section area a= 1 and
for cones, we let a= 3(s+ ε)2/(1+3ε+3ε2), where
ε= 10−5� 1, a cutoff to prevent singular behavior at
the tip. Then, maximizing L

∫ 0
1
cos θ ds subject to the

constraint (a2θs)s+χ(
∫ s
0
ads)cos θ= 0 yields χ= 4.886

for the optimal cylinder, so that Lcyl ≈ 0.79(EV/ρg)1/4,
and Xcyl ≈ 0.67(EV/ρg)1/4, while χ= 39.90 for the
optimal cone, so that Lcone ≈ 1.33(EV/ρg)1/4 and
Xcone ≈ 1.14(EV/ρg)1/4. In fig. 3(a), we compare the
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center lines of the scaled drooping optimal cylinder and
the optimal cone with the optimal shape, and find that
the optimal branch reaches out 43% further than the
optimal cylinder, but only 3% further than the optimal
cone of the same volume and material.
Given the shape of the optimal cantilevered branch with

the furthest branch, we now ask if a direct comparison
with the shapes of tree branches is possible. While the
latter is influenced by multiple factors as discussed earlier,
the measured shape of tree branches shows that the cross-
sectional area of the branch, averaged over many trees,
grows like s3±0.26, where s is the distance from the branch
tip [14]. Previous explanations for this were based on
the notion of elastic similarity, i.e. the maximum stress
(strain) at any location along the branch is the same [3],
deduced using global considerations under the assumption
of small deflection theory, for a given branch length. Here
we see that the same result arises naturally as the unique
local universal similarity solution (19) of our optimization
problem near the tip. Our local explanation is attractive
since it does not assume that the deflections are small,
nor any information of the branch’s global dimensions;
indeed it suggests a simple way to maintain the shape
of a growing branch using only local information. Of
course, this local solution eventually must give way to
a global shape that is determined by the shape and
weight of the whole branch. Our optimal branch with
the furthest reach assumes a very simple material law
that ignores the microstructural complexity of wood in
a branch which is also anisotropic and inhomogeneous,
so that many questions about real branches remain. In
particular, the introduction of additional fields such as the
density ρ, modulus E and the material anisotropy also can
be optimized; however this require further information of
the restrictions on these fields that is currently unknown.
We conclude with a brief discussion of related optimiza-

tion problems that out study also illuminates. When we
relax the assumption of a solid cross-section an extreme
departure is that of a thin circular tube, with a large bend-
ing stiffness (per unit mass of the branch); such a branch
can therefore be much longer than one with a solid cross-
section. The ultimate limit for the length of a thin circu-
lar tube is then determined by the condition that it does
not buckle locally and form a kink-like structure (akin
to a bent straw) under the influence of its own weight.
Brazier [15] first described the onset of this ovalization and
kinking instability which arises when the bending moment
exceeds the critical value 2

√
2Eπr̂t̂2/(9

√
1− ν2). For a

tube of thickness t̂ and radius r̂ (t̂� r̂) the second moment
of inertia is I = πr̂3t̂, and the cross-sectional area is â=
2πr̂t̂. Then, the constant dimensionless parameter that
characterizes the geometry of all self-similar cross-sections
c= I/â2 = r̂/(4πt̂) implies that the ratio r̂/t̂must be fixed.
Since the torque on the branch increases monotonically
towards the base, as shown in fig. 2(c), to prevent Brazier
buckling anywhere along the tubular branch, it is sufficient
to prevent it from happening at the base. This is guar-
anteed via the inequality cEâ2θ̂ŝ < 2

√
2Eπr̂t̂2/(9

√
1− ν2)

that sets a limit on c given by

c9/8
(
ρg

χE

)3/8
V 1/8a1/2θs <

1

18π(1− ν2) . (28)

As χ, a and θ are universal, eq. (28) immediately gives
us a corresponding upper limit r̂/t̂ for given constants
E, V and ν. Use the parameters above and a Poisson
ratio ν = 0.5, we find r̂/t̂ < 12.1. For this critical ratio,
the length of the neutral axis of the tapered tube is
L≈ 2.62(EV/ρg)1/4 and the horizontal reach-out distance
is X ≈ 2.20(EV/ρg)1/4, which is significantly further than
that for a solid circular cross-section. Similar calculations
are possible for other cross-sections, although one must
be careful to avoid bend-twist instabilities in elongated
cross-sections, i.e. there are additional constraints on the
geometric aspect ratio on the cross-section. It is also
possible to allow the boundary conditions to vary as well
—for example, if the clamping angle is a variable, it is
intuitive that the reach can be extended still further— our
preliminary calculations suggest that this is true. Clearly,
including boundary, geometrical and material variations
into the optimization of branch reach is a natural next
step in this rich class of geometrically non-linear structural
optimization problems.
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