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Axisymmetric spreading of surfactant from a
point source
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Guided by computation, we theoretically calculate the steady flow driven by the
Marangoni stress due to a surfactant introduced on a fluid interface at a constant
rate. Two separate extreme cases, where the surfactant dynamics is dominated by the
adsorbed phase or the dissolved phase, are considered. We focus on the case where
the size of the surfactant source is much smaller than the size of the fluid domain,
and the resulting Marangoni stress overwhelms the viscous forces so that the flow
is strongest in a boundary layer close to the interface. We derive the resulting flow
in a region much larger than the surfactant source but smaller than the domain size
by approximating it with a self-similar profile. The radially outward component of
fluid velocity decays with the radial distance r as r−3/5 when the surfactant spreads
in an adsorbed phase, and as r−1 when it spreads in a dissolved phase. Universal
flow profiles that are independent of the system parameters emerge in both the cases.
Three hydrodynamic signatures are identified to distinguish between the two cases
and verify the applicability of our analysis with successive stringent tests.

Key words: convection, Marangoni convection

1. Introduction
Surfactant spreading on a liquid has received much attention for thin films (Craster

& Matar 2009), but not for deep layers of fluids. Past attempts at analysing
Marangoni-stress-driven flow on a deep layer of fluid have been in the context
of thermo-capillary (Bratukhin & Maurin 1967; Napolitano 1979; Zebib, Homsy &
Meiburg 1985; Carpenter & Homsy 1990, e.g.) or thermo-soluto-capillary convection
(Bratukhin & Maurin 1968), with the notable exception of Jensen (1995) who analysed
transient dynamics from localized release of an adsorbed surfactant. Interest has
recently increased in the study of steady flow set by release of soluble amphiphiles
at a constant rate (Roché et al. 2014; Le Roux et al. 2016). In this case, the
surfactant is removed from the vicinity of the interface as it dissolves in a fluid bath,
establishing a state that changes very slowly with the surfactant concentration in
the bath. Consistent theoretical treatment of this type of Marangoni-driven surfactant
advection is of fundamental interest and the topic of this article.

The general surfactant transport process coupled with the sorption kinetics and
driven by a self-imposed Marangoni stress (Dukhin, Kretzschmar & Miller 1995;
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D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 2
08

.1
15

.9
1.

75
, o

n 
20

 N
ov

 2
01

7 
at

 1
6:

49
:3

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

70
8

http://orcid.org/0000-0002-1525-8325
mailto:shreyas_mandre@brown.edu
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.708


778 S. Mandre

Noskov 1996; Eastoe & Dalton 2000; Young et al. 2009; Xu, Booty & Siegel 2013)
is a problem with formidable complexity. The surfactant concentration is governed
by the equilibrium isotherm and the transient dynamics of adsorption and desorption.
The transport of surfactant is governed by the surfactant diffusion and advection by
the flow established by the Marangoni stress. The Marangoni stress itself depends on
the relation between the instantaneous surfactant concentration at the interface and the
surface tension. The flow that develops is governed by the Navier–Stokes equations,
depending on the density and viscosity of the fluid, and any geometric parameters
describing the fluid domain. An analytical solution to the general coupled problem,
while greatly desired, is not available.

For the case under consideration, a steady release of soluble amphiphilic surfactant
through a point source on the interface has been reported to establish a quasi-steady
flow near the surface of a deep pool (Roché et al. 2014; Le Roux et al. 2016). The
radial extent of this flow is finite for the surfactants studied (Le Roux et al. 2016)
and the axisymmetric radial velocity profile on the surface of the fluid appears to be
universal in shape (Roché et al. 2014). In these studies, it was tacitly assumed that the
surfactant spreads in a dissolved phase, and that the surface tension gradient driving
the flow arises from the bulk concentration of the surfactant near the interface. More
recent experiments by Bandi et al. (2017) revealed a power-law decay of the surface
velocity either with the distance r from the surfactant source as r−3/5 or as r−1, and
an accompanying depthwise self-similar boundary layer profile. Here we theoretically
expound a possible reason for the two different exponents and the self-similar velocity
profile in terms of two extremes in the surfactant dynamics. In this article, we show
that when the surfactant dynamics is dominated by the surface adsorbed phase, the
fluid velocity decays as r−3/5, and when dominated by the dissolved phase the decay
is as r−1. The former corresponds to the surfactant dynamics in the Marangoni regime
where the hydrodynamic time scale is so much faster than the sorption kinetics that
little exchange of surfactant occurs between the surface and the bulk. The latter
corresponds to the Gibbs regime with the sorption kinetics occurring much faster
than the hydrodynamic time scale so that an equilibrium between surface and bulk
surfactant may be assumed to have been established.

Using numerical computations as initial guides, we develop here the mathematical
solutions describing the axisymmetric flow resulting from a concentrated steady source
of surfactant on the surface of a deep fluid layer. We maintain the two-way coupling
between the surfactant transport and the flow. Instead of the more general problem
of soluble surfactant dynamics, we consider the two extreme possibilities where the
surfactant dynamics is dominated by the adsorbed phase (i.e. Marangoni regime)
or the dissolved phase (i.e. Gibbs regime). The specific mathematical models for
the two cases of adsorption-dominated or dissolution-dominated surfactant transport
are described in §§ 2.1 and 2.2. Each case is simulated numerically (see § 2.3)
and the resulting flow in the region much larger than the surfactant source but
much smaller than the flow domain is rationalized using similarity solutions (§§ 3.1
and 3.3). In the case of adsorption-dominated surfactant transport, we exploit a
thin boundary layer structure of the flow near the fluid surface to make analytical
progress. The criteria for validity of the assumptions that underlie the boundary layer
similarity solution for this case are also presented in § 3.2. The similarity solution
for dissolution-dominated surfactant transport is available due to Bratukhin & Maurin
(1967), which we specialize to the limit where the flow occurs in a boundary layer.
We conclude in § 4 by presenting invariant hydrodynamic signatures that distinguish
between the two extremes in surfactant dynamics.
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FIGURE 1. Schematic set-up of the problem. A point source located at the origin releases
insoluble surfactant on the interface of a semi-infinite pool of fluid. The interface is along
the z= 0 plane. The Marangoni stress on the fluid interface arising from the non-uniform
distribution of surfactant drives a flow in a boundary layer of thickness δ(r).

2. Mathematical model
Consider an semi-infinite bath of fluid with a free interface along the z= 0 plane

as schematically shown in figure 1. A surfactant is released at a constant rate from a
point source located at the origin. The axisymmetric forcing suggests description of
the flow in cylindrical polar coordinates (r, z) using the radial and axial components
of velocity u(r, z) and w(r, z) respectively.

The fluid flow satisfies the incompressible Navier–Stokes equations

(ru)r + rwz = 0, (2.1a)

(ru2)r + (rwu)z + rpr = ν
(

ruzz + (rur)r −
u
r

)
, (2.1b)

(ruw)r + (rw2)z + rpz = ν(rwzz + (rwr)r), (2.1c)

where p is the fluid pressure field divided by fluid density. The fluid is quiescent far
from the interface. The interface is assumed to be fixed at z= 0, and the Marangoni
stress arising from the non-uniform surface tension σ implies

w= 0 and µuz = σr at z= 0. (2.2a,b)

2.1. Case of adsorption-dominated surfactant dynamics
In case the sorption kinetics are not sufficiently fast relative to the hydrodynamic
time scale, the surface tension of the interface is dominated by the dynamics of the
adsorbed surfactant. The surface tension σ depends on the area concentration of the
surfactant c2, which we approximate for small concentrations to be linear as

σ = σ0 − Γ2c2, (2.3)

where σ0 is the interfacial tension without surfactant and Γ2 is a material constant.
We assume the diffusion to be weak compared to advection, as is the case for
most surfactants, so that diffusion of the surfactant can be neglected. A quantitative
criterion for the validity of this neglect is developed later in the article. The surfactant
is transported along the interface by advection implying

2πru(r, 0)c2 = q2 = const., (2.4)

where q2 is the strength of the point source. Note that due to the linear relation
between c2 and σ in (2.3) and between c2 and q2 in (2.4), the parameters q2
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and Γ2 only influence the flow through the combination K2 = Γ2q2/2πµ. The only
independent parameters in the problem are K2 and ν, both possessing purely kinematic
dimensions. The focus of this paper is on the steady flow that is established far
behind the surfactant spreading front or as the surfactant dissolves in the bulk
far away from the source and is depleted from the interface. This condition is
implemented computationally by introducing a surfactant sink on the outer boundary
of the computational domain.

2.2. Case of dissolution-dominated surfactant dynamics
In the case of a soluble surfactant, the volumetric concentration c3 dominates
surfactant transport and governs the surface tension profile, which we represent as

σ = σ0 − Γ3c3 at z= 0, (2.5)

where Γ3 is a material parameter. The surfactant, in this case, is transported within
bulk of the fluid by an advection–diffusion process as

uc3,r +wc3,z =D
[

1
r
(rc3,r)r + c3,zz

]
, (2.6)

where D is the diffusivity of the surfactant. Note that the bulk diffusivity of the
surfactant may not be neglected in this case, no matter how small it may be. This
is so because diffusion across the depth of the fluid layer governs the surface
concentration, which in turn determines the Marangoni force. Conservation of the
surfactant is expressed in terms of the integrated flux of surfactant q3 crossing a
cylinder of radius r as∫ 0

−∞

[2πru(r, z)c3(r, z)−Drc3,r(r, z)] dz= q3 = const. for all r. (2.7)

Similar to the case of insoluble surfactant, the linear relations between σ , c3 and q3
imply that Γ3 and q3 only appear in the combination K3 = Γ3q3/2πµ. Thus K3, ν
and D are the independent parameters describing the problem, all of them possessing
purely kinematic dimensions. The Schmidt number is defined as Sc= ν/D.

Although we have reduced the number of parameters in each case, they are still
too numerous to furnish a useful non-dimensionalization. For example, a length
scale ν2/K2 and a velocity scale K2/ν may be constructed for the insoluble case,
but as we find later, these parameter combinations do not represent the scales of
length and velocity realized in the solution of the governing equations. This is so
because, by supposition, the region of interest for our analysis spans distances from
the source much greater than ν2/K2. It is not a priori obvious how the length scale
ν2/K2 and the distance from the source must be combined to derive the appropriate
length scale for the Marangoni flow (see Napolitano (1979) for a more detailed
dimensional analysis). Therefore, we first attempt a computational solution of the
dimensional governing equations, and upon examining their structure construct a
suitable non-dimensionalization.

2.3. Numerical solutions
Transient versions of the governing equations were implemented and solved using
COMSOL’s Computational Fluid Dynamics and Mathematical Modeling module
starting from a static fluid layer with a clean interface until a steady state is reached.
The domain was chosen to be a cylinder large enough (radius 2.5 m and depth 2.5 m
for the insoluble case, and radius 0.48 m and depth 0.48 m for the soluble case) to
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FIGURE 2. (Colour online) Sample radial velocity profiles near the free interface z = 0,
where the strongest flow occurs, obtained from the solutions of (2.1)–(2.4). The profiles
are plotted for seven distances from the source corresponding to radial sections at r =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 m as indicated by location of each curve. The four
panels show: (a) ν = 10−6 m2 s−1, K2 = 10−2 m3 s−2 (blue), (b) ν = 10−6 m2 s−1, K2 =

10−1 m3 s−2 (green), (c) ν = 10−5 m2 s−1, K2 = 10−3 m3 s−2 (red), (d) ν = 10−5 m2 s−1,
K2 = 10−2 m3 s−2 (cyan).

approximate an infinite domain, but small enough so that for the parameters chosen
no flow instabilities appeared. The z< 0 region of the cylinder is filled with a fluid
possessing density in the range 103–104 kg m−3 and dynamic viscosity µ ranging
from 10−1–10−3 Pa s. The point source of surfactant located at the origin is assigned
a small finite extent (radial extent r0 ≈ 10−3 m) so that the singularity at r = 0
is regularized. Outflow (i.e. zero gauge pressure) boundary conditions are imposed
at the outer radius and lower boundary to better approximate an infinite domain.
Imposing other boundary conditions such as no slip or slip without penetration
does not significantly affect the flow in the region much larger than r0 but smaller
than the domain size. To achieve a steady state, the surfactant is absorbed on the
outer boundary of the cylinder by imposition of c2,3 = 0, while a no-flux condition
applies everywhere else on the boundary. We used an non-uniform unstructured
triangular mesh and a non-uniform structured rectangular mesh for discretization.
The discretization is finer near the surfactant source and the interface to resolve
the presence of the boundary layer. The grid was successively refined to test for
numerical convergence and confirm the self-similar flow structure.

Sample steady state radial flows for four cases are shown in figures 2 and 3. The
flow is fastest at the interface, and falls off rapidly with depth over a length of
O (1 cm) indicating a boundary layer structure driven by Marangoni stresses. The
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FIGURE 3. (Colour online) Sample radial velocity profiles near the free interface z = 0
obtained from the solutions of (2.1), (2.5) and (2.6). The profiles are plotted for seven
distances from the source corresponding to radial sections from r = 0.01 to 0.07 m as
indicated by location of each curve. The four panels show: (a) K3 = 4 × 10−9 m4 s−2

(blue), (b) K3 = 8× 10−9 m4 s−2 (green), (c) K3 = 16× 10−9 m4 s−2 (red), (d) K3 = 8×
10−9 m4 s−2 (cyan). Here ν = 2 × 10−5 m2 s−1, and Sc = 2, except for (d), where ν =
2× 10−6 m2 s−1 and Sc= 0.2.

dependence of the velocity and length scales on the problem parameters will be
explained using a boundary layer approximation and self-similar solution of the
governing equations.

A simple description of the flow in terms of power-law decay away from the
surfactant source may be derived using dominant balances as follows. At a radius r
from the source, let us assume that the radial velocity decays as a power law denoted
by u(r) and the surfactant concentration as c2,3(r). A balance between inertia (per
unit mass) which scales as u2/r and viscous forces which scale as νu/δ2, where δ(r)
is the expected boundary layer thickness, implies δ = (νr/u)1/2. When the surfactant
spreads in an adsorbed phase, its conservation implies 2πruc2 = q2. Combining this
with a balance between the Marangoni stress Γ2c2/r and the shear stress on the
interface µu/δ, yields

u∝
K2/5

2 ν1/5

r3/5
, δ ∝

ν2/5r4/5

K1/5
2

, and
c2

q2
∝

1

K2/5
2 ν1/5r2/5

. (2.8a−c)

A similar scaling analysis for the case of dissolved surfactant may be used to
rationalize the r−1 scaling of velocity but not the dimensional pre-factor. It can readily
be seen from momentum conservation that if u ∝ rn, then δ ∝ r(1−n)/2. Surfactant
transport occurs in a layer of thickness δSc−1/2

∝ r(1−n)/2. The Marangoni stress
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FIGURE 4. (Colour online) Surface radial velocity as a function of radial distance. (a)
The four cases of insoluble surfactant shown in figure 2 with identical colour code. Solid
black line shows the power law r−3/5. (b) The four cases of soluble surfactant shown in
figure 3 with identical colour code. Solid black line shows the power law r−1.

at the surface scales as u/δ ∝ r(3n−1)/2, which implies the surfactant concentration
scales as c3 ∝ r(3n+1)/2. Therefore, the surfactant flux is q3 ∝ ruc3δ ∝ r2(1+n). Since
q3 is independent of r, we conclude n = −1, implying u ∝ r−1, δ ∝ r, and c3 ∝ r−1.
The reason for the failure of this simple scaling argument to yield the dimensional
pre-factors will be clarified later.

In figure 4, we plot the numerically obtained radial velocity on the surface as
a function of r and compare it with the previously derived power laws. (The kink
in the profiles at r = 10−3 m for the dissolution-dominated case corresponds to the
abrupt jump in the surfactant flux from a non-zero value inside the source to zero
outside.) The power-law behaviour compares well with the numerical solution in an
intermediate range of radial distances, which are much larger than the source but
smaller than the domain size.

3. Self-similar profiles
The power-law description paves the way for a self-similar description of the flow

in this intermediate region, which we derive next. The simple balances presented
above, including the dimensional pre-factors for the adsorbed surfactant case, are
closely associated with a self-similar flow with a universal velocity and surfactant
profile, which is the topic of the rest of the article.

3.1. Adsorption-dominated surfactant transport
The power law in the surface velocity profile implies scale free dynamics, and
therefore a self-similar flow. The self-similar flow can be described using a similarity
variable

ξ =
z
δ(r)

, where δ =
ν2/5r4/5

K1/5
2

(3.1)

is the boundary layer thickness according to (2.8). Assuming δ � r, the governing
fluid equations simplify to the Prandtl boundary layer equations

uur +wuz = νuzz, pz = 0, (ur)r + rwz = 0, (3.2a−c)
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in a region of length O(δ) near the interface. Outside this region, the flow is weak, and
therefore u, w and p are neglected there. At the leading order, we need only impose
u = 0 as the outer region condition, while w and p could approach finite non-zero
values. A separate treatment of the outer region follows later.

Continuity (2.1c) may be satisfied by using a self-similar form for the velocity
components with the dimensional pre-factor determined from (2.8) as

u(r, z)=
K2/5

2 ν1/5

r3/5
f ′(ξ), and w(r, z)=−

K1/5
2 ν3/5

5r4/5
(6f (ξ)− 4ξ f ′(ξ)), (3.3a,b)

where f is a function to be determined.
Substituting this ansatz in (3.2) yields

f ′′′(ξ)+ 3
5 f ′(ξ)2 + 6

5 f (ξ)f ′′(ξ)= 0. (3.4)

The boundary conditions (2.2)–(2.4) can be combined into one by eliminating c2(r),
to get

uz(r, z= 0)=−
Γ2q2

2πµ

(
1

ru(r, 0)

)
r

=−K2

(
1

ru(r, 0)

)
r

. (3.5)

Upon substitution of the ansatz (3.3) in (3.5), the condition (2.2) and the stagnation
of the fluid outside the boundary layer yields a full set of boundary conditions for f
as

f (0)= 0, f ′′(0)f ′(0)= 2
5 , and f ′(−∞)= 0. (3.6a−c)

The simple dominant balance, which we used to derive the power-law expressions in
(2.8), can be seen throughout this derivation as the balance between coefficients of the
terms representing the respective physical effects. In this manner, the simple dominant
balance analysis represents the more detailed derivation based on self-similarity.

Equations (3.4) and (3.6) are numerically solved using a shooting method, which we
outline next. The method starts with a guess for f ′′(0) and sets the corresponding f ′(0)
using (3.6). The initial value problem with the guessed initial condition is then solved
numerically using a fourth-order Runge–Kutta method and its asymptotic behaviour as
ξ →−∞ is examined. The solution asymptotically either diverges to ∞ or −∞ as
f ∼ Cξ 2/3, thereby violating the far-field boundary condition in (3.6). However,
between the cases that diverge to ∞ and those that diverge to −∞ is one solution
that remains bounded. For this case f approaches a constant value, f∞. This possibility
may be examined by making the ansatz f = f∞+ εg(ξ)+ · · · for ε� 1, resulting in

f (ξ)= f∞ + ε(a1 + b1ξ + c1e−6f∞ξ/5)+O(ε2), (3.7)

where a1, b1 and c1 represent arbitrary constants of integration. Note that b1 must be
zero so that asymptotic ordering of the solution is maintained as ξ →−∞ and a1
may be absorbed into f∞. The objective of the shooting method is to guess the initial
value f ′′(0) such that this bounded solution with b1 = 0 is asymptotically achieved.
We find this solution by successive bisection of the interval of f ′′(0) with end points
that lead to diverging solutions with opposite signs. This bisection was implemented
manually to determine that f ′′(0) = 0.4022874 solves (3.4)–(3.6) numerically to 7
digit accuracy. Correspondingly, f ′(0)= 0.9943141 and f∞ =−1.138864, which leads
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FIGURE 5. (Colour online) Comparison of the computational solutions with the similarity
solution in the boundary layer for the case of adsorbed surfactant transport. (a) The radial
component and (b) the axial component of fluid velocity, scaled according to the similarity
solution predictions, are plotted (green symbols) for all the profiles shown in figure 2. The
solution of (3.4)–(3.6) obtained using shooting method (dashed curve) is also shown for
comparison.

to u(r, 0) = f ′(0)K2/5
2 ν1/5r−3/5. The axial velocity just outside the boundary layer is

w(r, ξ→−∞)=−1.2f∞K1/5
2 ν3/5r−4/5. The resulting self-similar profiles for u and w

based on the solution for f (ξ) and its derivatives are shown in figure 5.
The similarity solution is compared with the four direct computational solutions

in figure 5. The reduction of the variability between the profiles resulting from
the differences in K2, ν and r, and the excellent comparison with the f (ξ) and its
derivatives computed as a solution of (3.4) and (3.6), verifies the validity of the
similarity solution.

Outside the boundary layer, the flow retains its self-similar structure, but with
a different scaling. The viscous stresses may be neglected to leading order, and a
potential flow driven by volume flux of fluid entraining the boundary layer may be
used to describe the resulting flow. The velocity potential, denoted φ(ρ, θ) in terms
of spherical polar coordinates (ρ, θ) defined by r = ρ sin θ and z = −ρ cos θ , with
the corresponding velocity components v = φρ and q= φθ/ρ respectively, satisfies

∇
2φ =

1
ρ2
(ρ2φρ)ρ +

1
ρ2 sin θ

(sin θφθ)θ = 0, (3.8)

with the matching condition of the fluid flux into the boundary layer,

1
ρ
φθ

(
ρ, θ→

π

2

−
)
=w(ρ, ξ→−∞)=−1.2f∞K1/5

2 ν3/5ρ−4/5. (3.9)

A standard solution of Laplace equation in the form φ=Cφrnfo(cos θ) may be sought.
Substituting this form in the boundary condition yields n = 1/5, and the Legendre
differential equation for fo as

(1− s2)f ′′o (s)− 2sf ′o(s)+ n(n+ 1)fo = 0. (3.10)
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0
0 0.25 0.50 0.75 1.00 0 0.5 1.0–1.0 –0.5

(a) (b)

FIGURE 6. (Colour online) Comparison of the computational solutions with the similarity
solution in the outer region for the case of adsorbed surfactant transport. (a) Azimuthal
velocity component and (b) the radial velocity component, in the range 0.02 m < ρ <
0.1 m, obtained from computational solutions (green symbols) are the scaled according to
and compared with the analytical expression in (3.11) (solid black curves).

A solution may be written in terms of the regular Legendre function P1/5, which solves
this differential equation, as

φ =Cφr1/5P1/5(cos θ), v =
1
5

Cφr−4/5P1/5(cos θ),

q=−Cφr−4/5P′1/5(cos θ) sin θ, where Cφ =
6f∞K1/5

2 ν3/5

5P′1/5(0)
.

 (3.11)

(Note that Cφ here has SI units of m9/5 s−1.)
This solution is compared with the computational solution in figure 6. To isolate

the intermediate range of scales much larger than the source and the boundary layer
thickness, but much smaller than the computational domain, this comparison is limited
to computational points with 0.02 m<ρ < 0.1 m. The raw values of v and q in this
region vary by approximately two orders of magnitude for a fixed θ , however, upon
accounting for the dimensional factor Cφ and the spatial scaling factor of ρ−4/5, the
variation reduces to within 10 %.

The momentum balance in the outer region reduces to the Bernoulli equation, and
yields the pressure variation as p=−(1/2)(v2

+ q2). Using this relation, the pressure
may be estimated to leading order to be

p=−
C2
φ

2ρ8/5

(
P2

1/5(cos θ)
25

+ P′21/5(cos θ) sin2 θ

)
. (3.12)

The pressure variation across the boundary layer is negligible due to its thinness, and
therefore the pressure everywhere in the fluid is approximated by (3.12).

3.2. Asymptotic criteria for the validity of self-similar solution
We now revisit the assumptions made in deriving the similarity solution, and where
possible derive the quantitative criteria for their validity. Perhaps the most striking
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Axisymmetric spreading of surfactant from a point source 787

assumption underlying this analysis is simplification of the surfactant transport
processes. Since it is the premise of our approach that the velocity field encodes
information about the surfactant transport, we do not examine the validity of the
assumptions related to surfactant transport. Instead, in this article we merely pursue
the logical conclusion of these assumptions, so that they can be compared against
experimental measurements. However, many other assumptions were made in the
interest of semi-analytical results, and next we verify their validity.

3.2.1. Boundary layer approximation
The application of the boundary layer approximation implies ∂r � ∂z and that the

outer (radial) flow is much weaker than the one in the boundary layer. The former
implies r� δ, or equivalently from (3.1)

ν2

K2
� r. (3.13)

Furthermore, the neglect of the outer radial velocity, which scales as Cφ/r4/5 from
(3.11), compared to the boundary layer radial velocity, which scales as K2/5

2 ν1/5/r3/5

from (3.3), is equivalent to (3.13). The criterion (3.13) implies the similarity solution
to be valid at radial distances much larger than the length scale that can be constructed
from dimensional analysis.

3.2.2. Neglect of surfactant diffusion
According to (2.4), the surfactant concentration profile also decays as a power law,

implying that the radial length scale for variation in c2 is r. The domination of the
advective flux uc2, which scales as K2/5

2 ν1/5/r3/5
× c2 from (3.3), over the diffusive flux,

which scales as D2/r × c2, D2 being the diffusivity of the surfactant on the surface,
implies

r�

√
D5

2

K2
2ν
. (3.14)

3.2.3. Flatness of the interface
We had neglected the interface deformation motivated by the observations of Roché

et al. (2014) and Bandi et al. (2017), who report that no perceptible deformation of
the interface was observed, except for a liquid bridge connecting the interface to the
conduit conveying the surfactant solution. The closed form similarity solution allows
us to quantitatively estimate the deformation of the interface due to the non-uniform
pressure at the interface. Noting that P1/5(0) = π1/2/Γ (11/10)Γ (2/5) and P′1/5(0) =
−2π1/2/Γ (3/5)Γ (−1/10) (see Abramowitz & Stegun 1964, § 8.6), where Γ is the
Gamma function, the interface pressure may be approximated as

p=−Cp
K2/5

2 ν6/5

r8/5
where Cp =

18f 2
∞

25

(
P2

1/5(0)
25P′21/5(0)

+ 1

)
≈ 0.9550923. (3.15)

To leading order of the flat-interface approximation, a combination of gravity
and surface tension maintain the interface flat against this pressure. The change in
elevation of the interface, H(r), caused by the fluid pressure is given by

1
r
(rHr)r −

H
l2
c

=
p
σ
=−Cp

K2/5
2 ν6/5

σ r8/5
, (3.16)
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where lc is the capillary length and σ is the surface tension divided by fluid density.
While a solution to this equation may formally be written down in terms of Bessel
and Lommel functions,

H(r)=−Cp
K2/5

2 ν6/5l2/5
c

σ

[
K0

(
r
lc

) ∫ r/lc

0

I0(s)
s3/5

ds− I0

(
r
lc

) ∫ r/lc

∞

K0(s)
s3/5

ds
]
, (3.17)

where the lower limits of integration are chosen to satisfy the conditions of regularity
of H at r=0 and r→∞. For r� lc, the gravitational force dominates over the surface
tension, and the interface may be approximated by

H ≈Cp
K2/5

2 ν6/5l2
c

σ r8/5
. (3.18)

For r� lc, the Laplace pressure from surface tension dominates over gravity, leading
to the dominant balance

1
r
(rHr)r ≈−Cp

K2/5
2 ν6/5

σ r8/5
−→ H ≈Cp

K2/5
2 ν6/5

σ

(
H0l2/5

c −
25r2/5

4

)
, (3.19)

where H0 ≈ 6.948493 is a constant of integration determined from a numerical
evaluation of the integral in (3.17). The slope of the interface must remain small for
the validity of the approximations underlying the similarity solution. This criterion
translates to

|Hr(r)| ≈Cp
K2/5

2 ν6/5

σ

5
2r3/5

� 1 −→ r�
(

5Cp

2

)5/3 K2/3
2 ν2

σ 5/3
. (3.20)

3.3. Dissolution-dominated surfactant transport
The boundary layer approximation, that so successfully describes the flow resulting in
the case of surfactant transported in the adsorbed phase, fails for the case of dissolved
surfactant. The reason for this failure will be presented later. However, a self-similar
solution is still possible, as first demonstrated by Bratukhin & Maurin (1967). Here
we present a comparison of their solution with our numerical results. In addition, we
derive the asymptotic behaviour of this solution in the physically relevant limit of Sc=
ν/D� 1 and show that a universal self-similar profile exists in the limit K3Sc/ν2

� 1.
The solution is best presented in terms of spherical polar coordinates (ρ, θ) defined

by r= ρ sin θ and z=−ρ cos θ , with the corresponding velocity components v and q
respectively. The self-similar ansatz in this case is

v = ν
f̂ (θ)
ρ
, q= ν

ĝ(θ)
ρ
, and c3 =

ν

Γ3

ĥ(θ)
ρ
, (3.21a−c)

in terms of the symbols f̂ , ĝ and ĥ. An exact solution of the Navier–Stokes equations
is possible in this case, represented in terms of a single parameter A as

ĝ(θ)=−2
d

dθ
log F(ζ ), f̂ (θ)=−

1
sin θ

d
dθ
(sin θ ĝ(θ)), ĥ(θ)=

µA(1+ A)Sc

F(ζ )2Sc
,

(3.22a−c)
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FIGURE 7. (Colour online) Similarity solution for the case of soluble surfactant and
comparison with rescaled computational results from figure 3(a–c) with identical colour
code. (a) Azimuthal velocity, (b) radial velocity and (c) surfactant concentration. Symbols
indicate results of rescaled computational solutions K3Sc/ν2

= 20 (blue circles), 40 (green
squares) and 80 (red triangles) corresponding to panels in figure 3(a–c) respectively. Black
curves indicate similarity solutions corresponding to K3Sc/ν2

= 20 (solid), 40 (dashed) and
80 (dot-dashed). (d) Relation between A and the strength of Marangoni stress quantified
by a single parameter K3Sc/ν2A from (3.23) for different Sc shown in the legend. The
solid line shows the asymptotic value K3Sc/ν2A= 1 for A� 1 and the dashed line shows
K3Sc/ν2A= (πScA)1/2/2 for A� 1.

where

ζ = 1+ cos θ, F(ζ )= n2ζ
n1 − n1ζ

n2, and n1,2 =
1±
√

1+ A
2

. (3.22d−f )

The parameter A quantifies the strength of the Marangoni forcing (the surface velocity
is Aν/2r) and is related to the surfactant release rate by

K3Sc
ν2
= A(1+ A)Sc

∫ 2

1

[
4Sc2ζ (2− ζ )

F′(ζ )2

F(ζ )2
+ 1
]

dζ
F(ζ )2Sc

. (3.23)

The results of the numerical solutions shown in figure 3, when rescaled according
to the self-similar ansatz, collapse on the similarity solution (3.22a–c), as shown in
figure 7. Note that, while the flow is self-similar, the profile shape is not universal,
but varies with A, which depends on the strength of Marangoni stress as represented
by K3Sc/ν2 and Sc. This dependence is shown in figure 7(d), for Sc from

√
10 to

106, the range of Sc that encompasses many common chemical species. This range of
Sc corresponds to the asymptotic limit Sc� 1. This dependence from (3.23) has the
asymptotic limits

A∼K3Sc/ν2 for A� 1 and A∼
22/3K2/3

3 Sc1/3

π1/3ν4/3
for A� 1. (3.24a,b)
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In these two extremes, we expect a universal flow profile to emerge. In the case we
are interested in where A�1, the solution (3.22a–c) simplifies in a region of thickness
1nz=O(1) (transforming to cylindrical polar coordinates) to

u(r, z)≈
Aν
2r

ez/r

{
cosh(1n−1)

cosh2(ξ̂ −1n−1)
− 21n−1 sinh(ξ̂ )

cosh(ξ̂ −1n−1)

}
+O(1n−2), (3.25)

where ξ̂ =1nz/2r, A and 1n=
√

1+ A are determined from (3.23) (or figure 7d). In
the limit of large A, the profile approaches

u(r, z)≈
Aν
2r

sech2

(
zA1/2

2r

)
+O

(
1
1n

)
. (3.26)

Varying A in (3.26) simply rescales the boundary layer thickness as δ = 2r/A1/2 and
the velocity magnitude as Aν/2r, but does not change the leading-order shape of the
profile. In this sense, the profile is universal.

The flow profile in (3.26) in fact describes a free radial jet forced by a steady point
momentum source at the origin and a shear free boundary condition on the surface,
as originally derived by Squire (1955). Consider the solution of (3.2), which decays
as 1/r with the ansatz

u(r, z)=
aν
r

f̃ ′(ξ), w(r, z)=
a3/2ν

r
[ξ f̃ ′(ξ)− f̃ (ξ)], ξ =

za1/2

r
, (3.27a−c)

where a is a constant to be determined as part of the solution. The self-similar form
f̃ (ξ) satisfies

f̃ ′′′ + f̃ ′2 + f̃ f̃ ′′ = 0. (3.28)

The solution to this equation that satisfies w(r, z= 0)= 0 and u(r, z→∞)= 0 is

f̃ ′(ξ)= sech2

(
ξ
√

2

)
, (3.29)

which is identical to the leading order of (3.26) with a = A/2. This boundary layer
approximation applies in the limit a� 1, equivalent to the one under which (3.26)
was derived. However, note that (3.29) and (3.26) are unable to satisfy the Marangoni
stress condition at ξ = 0. Therefore, the value of a remains undetermined at this
order of boundary layer theory. (If an integrated momentum flux were available, as
in the case of Squire’s jet, it could be used to determine a.) Bratukhin and Maurin’s
solution is a perturbation of Squire’s jet, where the Marangoni stress is supported
by the next term of O(1n−1), and therefore the surface shear stress does not scale
with dimensional parameters according to the leading order. Due to this structure of
the flow, the simple scaling analysis of the type presented in § 2.3 fails to capture
the dependence of dimensional pre-factors on the parameters. Using the next-order
correction in (3.25) or the complete solution in (3.22a–c), we see that the shear at the
surface is Aν/r2 (weaker than the dimensionally expected Aν/δr as explained). The
shear stress on the surface µAν/r2 thus balances the Marangoni stress, which scales
as Γ3c3/r, yielding the scale for surfactant concentration c3 ∝ µAν/Γ3r. Surfactant
transport rate q3 then scales as ruc3δSc−1/2

= A3/2ν2µ/Γ3Sc1/2, where we have used
that the surfactant boundary layer is thinner than the momentum boundary layer by a
factor Sc1/2. This final balance yields A∝ (K2

3Sc/ν4)1/3 in agreement with (3.24) and
the results in figure 7(d).
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4. Discussion and conclusion

Here we have presented the similarity solutions underlying the Marangoni-stress-
driven flow due to a steady point source of surfactant, as it spreads either in an
adsorbed or dissolved state. The scope of this paper is limited to the case where the
flow occurs in a thin layer close to the free surface, as characterized by δ � r for
both cases, which in either case results in a universal velocity profile.

Based on the analysis presented in this article, the following hydrodynamic
signatures distinguish the two limits, expressed in terms of quantities that may
be measured experimentally. The power-law exponent for the decay of surface
radial velocity u(r, z = 0) is the first and obvious signature that distinguishes
between the two limits. The surface radial velocity decays proportional to r−3/5

in the adsorption-dominated case and to r−1 in the dissolution-dominated case. The
boundary layer scalings that collapse the depthwise velocity profile constitute the
second hydrodynamic signature that distinguish between the two limits. Along with
rescaling the velocity u(r, z) with u(r, z = 0), the depthwise coordinates need to be
rescaled with factors of δ(r) =

√
νrf ′(0)/u(r, z= 0) for the profiles to collapse with

f (ξ)/f (0) in the adsorption-dominated case. The appropriate depthwise coordinate
rescaling factor can be derived in the dissolution-dominated regime from (3.26) to
be
√
νr/u(r, z= 0). The third signature is the relation between the surface velocity

and the surface shear stress at different radii. In the adsorption-dominated case, this
relation is

uz(r, z= 0)=
u(r, z= 0)
δ(r)

f ′′(0)
f ′(0)

, (4.1)

whereas for the dissolution-dominated case it is

uz(r, z= 0)=
2u(r, z= 0)

r
. (4.2)

Depending on the available experimental accuracy, successively stricter comparison of
the measured velocity profile with the theory presented in this manuscript can be made
using these three signatures.

Our results rationalize experimental observations by Bandi et al. (2017) of the
power-law decay and boundary layer structure of Marangoni-driven flow. The
agreement between the experimental measurements and our theory suggests that
the more general surfactant dynamics may under certain circumstances be reduced
to simple models akin to Marangoni and Gibbs elasticity of surfactant-laden liquid
interfaces. The solutions developed here could also provide insight into the surfactant
dynamics based on flow velocimetry in experimental systems, such as by Roché et al.
(2014) and Le Roux et al. (2016). The precise criteria under which simplification is
possible and conditions for transition are left to be undertaken in the future.
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