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The mechanism of a splash on a dry solid surface
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From rain storms to ink jet printing, it is ubiquitous that a high-speed liquid droplet
creates a splash when it impacts on a dry solid surface. Yet, the fluid mechanical
mechanism causing this splash is unknown. About fifty years ago it was discovered
that corona splashes are preceded by the ejection of a thin fluid sheet very near
the vicinity of the contact point. Here we present a first-principles description of the
mechanism for sheet formation, the initial stages of which occur before the droplet
physically contacts the surface. We predict precisely when sheet formation occurs on
a smooth surface as a function of experimental parameters, along with conditions on
the roughness and other parameters for the validity of the predictions. The process of
sheet formation provides a semi-quantitative framework for studying the subsequent
events and the influence of liquid viscosity, gas pressure and surface roughness. The
conclusions derived from this framework are in quantitative agreement with previous
measurements of the splash threshold as a function of impact parameters (the size and
velocity of the droplet) and in qualitative agreement with the dependence on physical
properties (liquid viscosity, surface tension, ambient gas pressure, etc.) Our analysis
predicts an as yet unobserved series of events within micrometres of the impact point
and microseconds of the splash.
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1. Introduction
A high-speed droplet hitting a dry solid surface produces a splash. Despite over a

century of study (from Worthington 1876), and detailed measurements of splashing
thresholds (Levin & Hobbs 1971; Stow & Hadfield 1981; Bussmann, Chandra &
Mostaghimi 2000), the fundamental mechanism underlying splashing on a dry solid
surface is not understood. This was underscored by the recently unexpected discovery
that the splash threshold depends on ambient air pressure (Xu, Zhang & Nagel 2005).
As outlined by Rioboo, Tropea & Marengo (2001), Yarin (2006) and Deegan, Prunet
& Eggers (2008), a host of different phenomena arise from droplet impact, going by
the names of prompt splash, corona splash, etc. For the purposes of this paper, by
‘splash’ we mean the rapid event occurring when a droplet hits a surface, and without
a discernible delay generates a sheet at very high speeds, which disintegrates into
smaller droplets. The ejected sheet assumes the shape of a crown, and hence this
phenomena is often called the corona splash. The disintegration of the sheet is an
interesting problem in its own right, which has been studied extensively, see Keller &
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Kolodner (1954), Fullana & Zaleski (1999), Song & Tryggvason (1999), Thoroddsen,
Etoh & Takehara (2006), Dhiman & Chandra (2008), Zhang et al. (2010), and one
we will not be concerned with here. Instead we focus on the origin of the liquid
sheet which forms the corona and argue herein that a corona splash involves a sheet
being ejected at very high speeds before the droplet contacts the surface. Although
splashing, which is commonly defined as a breakup of the impacting drop, can occur
from slower impacts, for the reasons described herein, the corona splash produces the
fastest moving sheets and the smallest possible droplets. Sheet ejection has long been
observed (Lesser & Field 1983), and heretofore there has been no plausible theoretical
mechanism, and even modern high-speed visualization experiments have been unable
to observe the initial steps of its formation.

The most prevalent mechanism for sheet formation invokes the compressibility of
the liquid and the geometric singularity resulting from the locally parabolic shape
of the interface at the instant of contact. As a consequence of this singularity, the
contact line moves at speeds higher than the speed of sound in the liquid, leading
to a shock wave (Lesser 1981; Lesser & Field 1983; Haller et al. 2003). When the
contact line slows down below the speed of sound, this shock wave detaches from the
contact line and causes ejection of a sheet. We have argued before (Mani, Mandre &
Brenner 2010) that for millimetre sized droplets impacting at about 1 m s−1, trapping
of the surrounding air regularizes the geometric singularity by deforming the drop and
keeping the liquid speed below the speed of sound. Hence the compressible-liquid
mechanism cannot be underlying the mechanism of sheet ejection.

The role of air pressure in controlling splashing, as identified by Xu et al. (2005),
has added an extra piece to the splashing puzzle. Many computational models (e.g.
Harlow & Shannon 1967; Bussmann et al. 2000; Eggers, Fontelos & Josserand 2010;
Yokoi 2011) do not take the surrounding air into account. Xu et al. (2005) also
demonstrated a collapse of the splash threshold based on a scaling argument involving
dynamic compressibility. They did not present a detailed mechanistic model for the
process, and subsequent attempts (Schroll et al. 2010) to simulate the role of air have
not yet exhibited a transition between splashing and spreading. Thus, while the scaling
obtained by Xu et al. (2005) collapses their data, a mechanism for the process is still
missing.

Here we describe a first-principles, theoretical description of what causes the sheet
and the resulting corona splash, starting from the interaction of the liquid, solid and
intervening gas. The critical stages determining whether splashing occurs are when the
liquid is tens of nanometres from the surface, microseconds before contact. Our theory
builds on our previous model (Mandre, Mani & Brenner 2009) that at low velocities
the initial stages of liquid–solid impact result in a droplet spreading on a very thin
layer of air; here we demonstrate that above a critical velocity, the liquid ejects a
thin sheet before it contacts the surface. Sheet ejection arises from the competition
between liquid inertia in the vicinity of the contact point and surface tension. When
the sheet spreads on the air layer, there is no splash, but when it contacts the surface
the resulting viscous forces can deflect the sheet upwards, causing a splash.

Splashing thus results from a two-stage process: the first stage causes the formation
of a liquid sheet separated from the solid surface by a thin layer of air. We show
this through the rigorous mathematical solution of the governing partial differential
equations. The mathematical solution also furnishes us with quantitative predictions
about the nature of sheet ejection.

The theory also predicts its own demise: if the surface roughness or the gas
molecule mean-free path is larger than the air film thickness over which the sheet
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150 S. Mandre and M. P. Brenner

is formed, the droplet contacts the surface before sheet formation; if a splash occurs,
it will be far less violent. We present a quantitative map for how large a surface
roughness is needed to disrupt violent splashes, as a function of droplet size, impact
velocity and fluid parameters. If the sheet does form, the second stage involves
deflecting it from the solid surface, mediated by contact of the sheet with the
solid surface. We use these mathematical solutions to form a framework to semi-
quantitatively predict the evolution of the ejected sheet and the underlying air layer
beyond the inception of the sheet. Each of these stages can be interrupted by multiple
physical effects, which accounts for the complexity of the phenomenon in our picture
of the corona splash. In what follows we derive quantitative or qualitative predictions
for each of these stages as a function of experimental parameters. Our theoretical
framework quantitatively agrees with previous observations for the splash threshold,
is qualitatively consistent with the dependence on liquid viscosity, air pressure and
surface roughness (Xu et al. 2005), and also predicts an as yet unobserved series of
events near the impact point, within microseconds of the splash.

2. Mathematical model for sheet formation
To analyse these dynamics, we model the drop as a two-dimensional planar

incompressible fluid moving with velocity field u(x, t) = (u, v) governed by inviscid
flow mechanics

ρlut +∇π =−ρlu ·∇u, ∇ ·u= 0 for y> h(x, t), (2.1)

where π is the liquid pressure field and ρl the density of the liquid. The flow
kinematically advects the liquid interface y = h(x, t) according to ht + uhx = v, while
the drop is forced to deform by the buildup of pressure in the gas film. On the
other hand, the drop forces the air to drain from underneath it causing the buildup of
pressure. This is described by the governing equations for the gas film, which simplify
due to the thinness of the film to the well-known Reynolds lubrication equation
modified for a compressible gas (Taylor & Saffman 1957)

12µ (ρh)t− (ρh3px)x =−6µ (ρuh)x and π − p= σκ at y= h(x, t), (2.2)

where µ is the viscosity of the gas, p and ρ are the gas pressure and density
respectively, σ is the interfacial tension and κ the interface curvature. The gas pressure
and density are related by an equation of state p= P0 (ρ/ρ0)

γ , where P0 and ρ0 are the
ambient pressure and density respectively, and the exponent γ is chosen to be 1 for
isothermal and 1.4 for adiabatic compression. This forms a closed set of equations to
model the near-impact dynamics.

The isothermal or adiabatic nature of the gas is determined by thermal
considerations, which we show below to be the thermal properties of the liquid and the
surface. If the surface can rapidly conduct heat on the time scale of 1 µs, then the gas
can be maintained under isothermal conditions; on the other hand if the surface is a
poor conductor of heat the adiabatic approximation is more appropriate. Moreover, the
heating of the gas may also cause some of the liquid to evapourate, thus affecting the
thermal budget. We conclude that for common materials, the isothermal approximation
is more appropriate, hence we parametrized the gas using the exponent γ = 1.

We start our numerical simulations with the initial condition h(x, tinit) = h0 + x2/2R,
u = (0,−V) and p = P0 corresponding to an undeformed drop of radius R a
sufficiently large distance h0 from the surface at time tinit = −h0/V . Our goal is to
determine what happens to the interface as the droplet approaches the surface.
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3. Non-dimensionalization and a reduced mathematical model
Initially, the surrounding gas has no effect; the effect of the dominant distorting

forces, namely liquid inertia and gas viscosity, is felt when the lubrication pressure
in the gas, which scales as µVR/H2, becomes comparable to the pressure needed to
decelerate the drop ρlV2√R/H, H being the thickness of the air film, µ being the
viscosity of air and ρl the density of drop liquid. This provides the natural scale for
the thickness of the air film to be H = RSt2/3, where St = µ/ρlVR is the inverse
Stokes number comparing the relative sizes of the gas viscous stresses to the droplet
inertia. (The liquid viscosity can be neglected if it is sufficiently small, as explained in
appendices A and B.) In typical experiments, St is about 10−6–10−5 and hence H� R.
Dimensionally, the drop is within ∼ 1 µm of the surface in the last ∼ 1 µs before
impact when it deforms. Both these dimensions and the scaling have been previously
verified (Mani et al. 2010).

The small value of St implies that initially, the advection terms in (2.1)–(2.2) such
as u · ∇u, (ρuh)x and uhx scale a factor St1/3 smaller than ut, (ρh)t and ht respectively.
Physically, this means that the time scale of impact is so fast that the liquid particles
are displaced a distance which is a factor St1/3 smaller than the horizontal length scale.
Thus the advection term in the material derivative is negligible compared to the time
derivative. Similarly, the strength of the capillary pressure relative to the lubrication
pressure is measured by δ = (σ/µV)St4/3, where σ denotes surface tension; this is
approximately 10−5–10−4 in the parameter regime of interest and hence surface tension
is initially negligible. This implies that the terms on the right-hand sides of (2.1)–(2.2)
are initially small.

Thus the relevant scales for the impact process are found to be (Mandre et al. 2009;
Mani et al. 2010)

u= Vũ, x= RSt1/3x̃, h= RSt2/3h̃, (3.1a)

(p, π)= µV

RSt4/3 (p̃, π̃), t = RSt2/3

V
t̃, ρ = ρ0ρ̃. (3.1b)

Using these to non-dimensionalize, the equations become

ut +∇π =−St1/3u ·∇u, ∇ ·u= 0, (3.2)

12 (ρh)t− (ρh3px)x =−6St1/3 (ρuh)x
π − p= δκ

ht − v =−St1/3uhx

 at y= St1/3h(x, t), (3.3)

where κ = hxx/ (1+ St2/3h2
x)

3/2
is the non-dimensional interface curvature and we have

dropped the tilde decoration. The equation of state for the gas becomes p= εργ , where
ε = P0RSt4/3/µgV is the ratio of the ambient pressure to the lubrication pressure and
measures compressibility. Small ε means a very compressible gas, while for large ε
the gas is incompressible.

As the drop compresses the gas film, the gas temperature rises. If ε � 1, the
compression, and consequently the temperature rise, is negligible; thus the precise
value of γ used is irrelevant. For ε . 1, this temperature rise penetrates a distance
`thermal ∼ St1/3√DthermalR/V into the solid surface and the liquid drop, where Dthermal is
the thermal diffusivity of the solid or the liquid. The relative thermal capacity of the
thermal penetration layer to that of the gas is B= ρsolidCsolid`thermal/ρ0CgasRSt

2/3, where
ρsolid is the density of the solid, Csolid is its specific heat and Cgas is the specific heat
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152 S. Mandre and M. P. Brenner

capacity of the gas, and it determines whether the gas may be treated as isothermal or
adiabatic. If B� 1, the thermal capacity of the solid is much larger than that of the
gas layer, and the solid provides a larger thermal reservoir to maintain the temperature
of the gas layer. The isothermal approximation is appropriate in this situation. On the
other hand, if B� 1, the solid layer is rapidly equilibrated to the gas temperature (or
the thermal penetration depth is too small because the solid is insulating), making the
adiabatic approximation appropriate. For conducting surfaces like copper, B≈ 2.5×104,
while for glass B ≈ 500 and hence the isothermal approximation is applicable. We
have not found a solid for which the adiabatic approximation is more appropriate,
hence we only use γ = 1 in the simulations reported in this article.

Non-continuum effects are monitored by the inverse Knudsen number Kn = h/λ,
where λ is the local mean-free path. In non-dimensional form,

Kn= h

λ
= h

ρ0λ0/ρ
= RSt2/3ρ̃h̃

λ0
= Kn0 ρ̃h̃, (3.4)

where Kn0 = RSt2/3/λ0. Since λ0 increases with decreasing ρ0, Kn0 ∝ ε (we will also
drop the tilde in (3.4)).

The initial velocity of the drop is uniform (u, v) = (0,−1), and its initial vorticity
is zero. By Kelvin’s circulation theorem for the inviscid approximation, this vorticity
remains zero everywhere except in a boundary layer near the interface. In appendix B,
we show that the inclusion of viscous effects in the boundary layer only plays the
role of matching the shear stress at the interface and in doing so makes a small
perturbation to the solution we describe. Since the vorticity in the bulk of the drop is
zero, we can use a potential u = ∇φ to describe the velocity field in the drop. Mass
conservation demands that

∇2φ = 0, (3.5)

while the inviscid momentum conservation equation (3.2) reduces to the Bernoulli
equation

φt + π =−St1/3 |∇φ |2
2

, (3.6)

for y > St1/3h(x, t). The liquid pressure π is known at the interface, and hence (3.6)
may be treated as an evolution equation for φ on the interface. If f (x, t) is the value of
φ on the interface, f satisfies the evolution equation

ft + p=−St1/3 |∇φ |2
2
− δ hxx

(1+ St2/3h2
x)

3/2 . (3.7)

The time-marching algorithm can then be roughly stated as below. We start with
solving the Laplace equation for the potential and the fluid velocity everywhere for a
given f on the boundary. Then we update the potential on the boundary using (3.7)
to the new time step using the current p and φ. The current velocity is also used to
kinematically advect the interface and to update the gas pressure according to (3.3).
This then furnishes the new value of f , p and h on the interface to continue the
time-stepping.

In order to solve for the potential in the drop, we exploit St � 1 and use
perturbation methods to move the boundary of the domain from y = St1/3h(x, t) to
y= 0. This is done by expanding the potential as φ = φ0+St1/3φ1+· · · , where at each
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order ∇2φk = 0. The boundary conditions are

φ0 = f (x, t), φ1 + hφ0,y = 0, . . . at y= 0, (3.8)

φ0→−y, φ1→ 0, . . . as y→∞. (3.9)

The Laplace equation for φk can be solved using a Hilbert transform. In particular, the
required y-derivative of φ can then be written as φy = φ0,y + St1/3φ1,y + · · · , where

φ0,y =−1+H (fx), φ1,y =−H ((hH (fx))x), etc. (3.10)

and H denotes the Hilbert transform,

H (g)= 1
π

p.v.
∫ ∞
−∞

g(ξ)

x− ξ dξ. (3.11)

If we adopt the notation ψy =H (ψx) for ψ(x, t), a one-dimensional model for p, f
and h accurate to St1/3 can be concisely written as

ft + p=−St
1/3

2
(f 2

x + f 2
y )− δhxx, (3.12)

ht − fy + 1=−St1/3[(hfx)x+ (hfy)y], (3.13)

12 (ρh)t− (ρh3px)x =−6St1/3 (ρhfx)x . (3.14)

These equations, along with the equation of state, are solved numerically subject to the
initial conditions h= h0 + x2/2, f = 0 and p= ε.

The numerical method is a slightly modified version of the method we previously
used in the limit St → 0 (Mani et al. 2010). We modify our previous method
by adding the terms proportional to St1/3 as inhomogeneities computed from the
previous time step and treating them explicitly in the discretization. All other terms are
discretized implicitly.

4. Self-similar approach to contact
The dynamics for a representative impact is shown in figure 1. Viscous forces in

the gas resist the drainage of this film as pressure builds up in the centre of the
film and the drop interface deforms into a dimple. (This dimple eventually evolves
into a trapped bubble as observed by Chandra & Avedisian 1991 and Thoroddsen
et al. 2005.) Additionally, as the drop attempts to contact the surface, at the rim of
the dimple there is a rapid increase of gas pressure, liquid velocities and interface
curvature (Mani et al. 2010; Mandre et al. 2009). The mechanics around this putative
divergence holds the key to understanding droplet splashing.

We begin our analysis assuming incompressible flow in the gas, as is appropriate
for air at 1 atm (Mani et al. 2010). At lower pressures, gas compressibility is
important, as shown both in experiments (Xu et al. 2005) (see figure 2d) and in a
theoretical description of the gas flow (Mani et al. 2010). The latter predicted that
gas compressibility is important when the parameter ε is much smaller than 1. The
compressibility becomes important at lower gas pressures, which we consider in § 7.

With these approximations, the solution to this model predicts that when the drop
comes within about 1 µm of the surface, it is decelerated by the compressed air and
a stagnation point develops near the centre (see figure 1). The liquid near the centre
of the drop is diverted outwards and funnelled towards the periphery. This additional
flux of liquid on the rim enhances the liquid velocities there and the rim of the drop is
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Dynamics occurring
when a 1.7 mm radius ethanol drop moving at 3.7 m s−1 through air at 1 atm impacts on
a rigid surface. The drop shape is shown shaded, while the curves show instantaneous
streamlines of the flow in the drop. A bubble of air is trapped between the drop and the
surface while the liquid velocity and interface curvature diverge at the rim of the bubble.

able to reach closer to the wall. In this process, the drop shape starts to develop sharp
curvatures near the rim, and the drop velocities near the rim simultaneously grow. The
air pressure underneath the rim grows to balance the enhanced liquid momentum and
sustain the drainage of the air film. The same process repeats on smaller and smaller
length and time scale as the rim gets pushed out further.

Mathematically, this corresponds to similarity solutions of the governing equations
we had previously found (Mandre et al. 2009; Mani et al. 2010) by ignoring the small
terms on the right-hand sides of (2.1)–(2.2).

When St � 1 and δ� 1, the right-hand sides of (3.12)–(3.14) are small and can be
neglected for the initial phases of impact. To leading order, the equations become

ft + p= 0, (4.1)
ht − fy + 1= 0, (4.2)

12 (ρh)t− (ρh3px)x = 0. (4.3)

We have previously conducted a detailed analysis of the solution of these equations
(Mandre et al. 2009; Mani et al. 2010). These equations admit similarity solutions
with decreasing length scale where the minimum air gap vanishes at a finite time t0 as
hmin ∝ (t0 − t)α; e.g. the self-similar form of the gas pressure is

p(x, t)= pmax(t)Π

(
x− ct

`(t)

)
, (4.4)

where Π is the self-similar profile, c is the speed with which this profile moves away
from the centre of impact and `(t) is the diminishing length scale. Let us first consider
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FIGURE 2. (Colour online) (a) Snapshots of the drop spreading on a thin film of air due to
the surface tension (top). The capillary pressure resulting from the sharp curvatures developed
on the interface (bottom) decelerate the drop and avert contact with the surface. (b) Snapshots
of the interface overturning due to advection (top) and the instantaneous velocity of the
interface leading to the overturning (bottom). (c) The dimensionless air gap as a function of
St/δ = (ρlVR/µg)

1/3(µgV/σ), which measures the relative importance of advection to surface
tension. For fast impacts, St/δ is large and the interface overturns ejecting a sheet. For slow
impacts, St/δ is small and surface tension dominates causing the drop to spread on a thicker
film of air as found before (Mandre et al. 2009). (d) Comparison with the experimental
splash threshold for 1.7 mm radius ethanol drops on surface smooth up to at least 10 nm,
with transition between spreading and sheet ejection in the incompressible limit for air.
For ambient pressure larger than about 50 kPa, air can be considered to be incompressible
(Mandre et al. 2009). The majority of splash thresholds are measured in this regime (Range &
Feuillebois 1998; Bird, Tsai & Stone 2009). Xu et al. (2005) also reduced the air pressure, but
they also found lower velocities for which the splash threshold velocity is almost independent
of ambient pressure. These splash thresholds agree with the theoretical result, which predicts
the threshold to lie on the crossover region St/δ ≈ 0.1 shown in (c).

the incompressible case ε � 1 implying that ρ ≈ constant and only a small deviation
from this constant density is able to accommodate the required pressure variation. The
maximum relative pressure pmax , velocity umax and curvature hxx,max diverge while the
length scale ` approaches zero as

pmax ∝ h−1/2
min , umax ∝ h−1/2

min , hxx,max ∝ h−2
min, `∝ h3/2

min. (4.5)

We call this the incompressible similarity solution.
If the diverging pressure becomes O(ε), the gas begins to compress significantly

and the solution of (4.1)–(4.3) evolves to a different similarity solution, which we
term the super-compressible similarity solution. While the self-similar profiles for
the various functions are different, coincidentally the power-law exponents remain
identical to those of the incompressible similarity solution. A salient feature of both
these similarity solutions is their independence of the ambient pressure; it is only the
transition between the two that depends on P0.
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A third similarity solution is found for small ε � 1, which corresponds to a small
and very compressible ambient pressure. The equation of state in this case becomes
p = εργ � 1 and mass conservation equation (4.3) in the air film becomes ρh ≈
constant. The similarity solution has the exponents

pmax ∝ h−γmin, umax ∝ h−γmin, hxx,max ∝ h−1−2γ
min , `∝ h1+γ

min . (4.6)

We refer to this solution as the sub-compressible solution. The sub-compressible
solution also transitions to the super-compressible similarity solution as the pressure
builds up and cannot be neglected any more. Unlike the other two similarity solutions,
the sub-compressible solution depends on the ambient pressure.

5. Stage I: sheet formation
Whether a droplet produces a thin sheet that results in a splash depends critically on

what happens in the vicinity of the divergence. The key point is that the divergence
implies that the initially negligible terms (the right-hand sides of (2.1)–(2.2), inertia,
surface tension, liquid viscosity, gas compressibility and non-continuum effects) grow
rapidly and potentially can take over the dynamics. The only effect whose neglect
remains asymptotically valid near the divergence, as explained in appendix B, is
liquid viscosity. The most dramatic effects are those of surface tension and nonlinear
advection; depending on which is dominant, the divergence is regularized in different
ways, leading to different types of sheet ejection. Owing to the vanishingly small
length scale of the rim, the curvature in the azimuthal direction is overwhelmed by the
curvature in the radial direction, and hence only a two-dimensional model is required
to describe the dynamics.
Surface tension. Since the dimensionless curvature diverges as 1/h2

min, faster than
gas pressure, it cannot be neglected in π = p + σκ when σκ ∼ p. Substituting the
divergence laws (4.5), surface tension takes over the dynamics when δ/h2

min ∼ 1/h1/2
min,

or

hmin ∼ 5δ2/3, pmax = 0.8δ−1/3, (5.1)

where the constants of proportionality are determined from the numerical solutions.
Dimensionally, this scaling translates into hmin ≈ 5Rδ2/3St2/3, as verified in figure 2(c).
Computations also show that at this hmin the drop starts spreading on a thin layer of
air, radiating capillary waves as shown in figure 2(a). Physically, the surface tension
force due to the sharp curvature (shown in figure 2a) provides a sharp impulsive
deceleration to the local drop velocity and obviates the need for the gas film to
drain (Mandre et al. 2009). For a 1.7 mm ethanol drop moving at 1.5 m s−1 (ρl =
785 kg m−3, σ = 22 mN m−1 and we use µg = 1.8 × 10−5 Pa s, which corresponds to
a Reynolds number = ρlVR/µl ≈ 2000, Weber number = ρlV2R/σ ≈ 140) the air film
is 25 nm thick.
Advection. For faster impacts, the high velocities localized in the vicinity of the rim

cause the interfacial slope to diverge in finite time while the droplet is still a finite
separation from the surface (figure 2b). This happens because a point on the interface
near the rim moves faster than upstream points, amplifying the slope of the interface.

Mathematically, the advection terms such as u · ∇u, uhx and (ρuh)x are initially
negligible but grow faster than the time derivative terms ut, ht and (ρh)t. In
(3.12)–(3.14), these advection terms are seen to be proportional to St1/3. If we
again use the incompressible or the super-compressible divergence scalings, the time
derivatives grow as h−3/2

min , while the advection terms grow as h−2
min. The advection terms

can no longer be neglected when St1/3h−2
min ≈ h−3/2

min . This leads to the scaling estimate,
hmin ≈ 60St2/3, where the constant of proportionality is found from numerical solutions
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FIGURE 3. (Colour online) Sheet ejection velocity (dimensionless) as a function of St in the
incompressible limit. The line shows the prediction based (5.2a) and the dots the numerical
solution.

shown in figure 2(c). The effect of the advection terms is to cause the interface slope
to diverge in finite time.

Although our approximations break down once the interfacial slope becomes too
steep, the mechanism of slope amplification that occurs here is mathematically
identical to that observed in overturning ocean waves and in low-viscosity droplet
breakup (Chen, Notz & Basaran 2002). The diverging slope is therefore an indication
of sheet ejection. The fact that the slope divergence can occur on top of a finite air
film implies that the initial stages of sheet ejection occur before liquid–solid contact.
A similar steepening of the slope is considered to be underlying splashing on liquid
layers (Yarin & Weiss 1995), but milliseconds after the drop had merged with the
liquid layer.

We can also predict the exact instant in time when the advection terms begin to
dominate the dynamics, along with the maximum horizontal velocity on the interface
and the radial location of the diverging slope. The overturning occurs at t ≈ 7.6
in time units non-dimensionalized according to (3.1), where t = 0 occurs when the
undeformed drop would have touched the surface in the absence of air. The location of
the overturning is x≈ 5 in non-dimensional units.

The velocity at the instant of overturning can also be found by substituting the scale
for hmin when advection becomes dominant in the divergence law (4.5) for velocity.
This gives the ejection velocity to be 0.34St−1/3. This prediction is compared with
the numerical solution in figure 3. Written in terms of dimensional variables, these
quantities are

hmin ∼ 60RSt4/3, ueject ∼ 0.34VSt−1/3, (5.2a)

reject ∼ 5RSt1/3, teject ∼ 7.6RSt2/3/V, (5.2b)

where ueject is the initial velocity of the sheet, reject the rim radius at which the sheet
is ejected, teject the time of sheet ejection and the prefactors are determined from
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FIGURE 4. (Colour online) (a) The magnitude of the vertical velocity (dimensionless) vmin at
the location where h = hmin and the instant of overturning, as a function of St for difference
δ. (b) Same data as in (a), but collapsed onto a universal curve by plotting vminδ1/3 against
St2/3/δ. It can be seen from this graph that as δ increases, the approach velocity decreases.

numerical solutions of (2.1)–(2.2). Our ability to predict the prefactors in (5.2) is
due to the universal nature of the similarity solution leading to the initial divergence
(Mani et al. 2010). These estimates allow detailed quantitative predictions of when
the sheet is initially ejected: for example for a 1.7 mm radius ethanol droplet moving
at 3.74 m s−1 (Xu et al. 2005) (Reynolds number ≈ 5000, Weber number ≈ 850) we
predict that a liquid sheet emanates from a point 100 µm from the centre of impact, at
a speed 83 m s−1 and at t = 0.8 µs measured relative to the instant when the centre of
the drop would have touched the surface in the absence of the surrounding gas. The
gas film is 1.6 µm thick at the centre, but only 7 nm thick at the point of ejection.

It is worth remarking that even in the surface-tension-dominated regime, during
the spreading of the droplet on the air film, eventually the advection terms grow in
magnitude sufficiently to cause overturning and sheet ejection. However, the conditions
under which the sheet is ejected are different, and much less violent in the surface-
tension-dominated regime. Owing to the decelerating action of capillary forces in the
surface-tension regime, the interface velocity is almost horizontal behind the spreading
front. This is shown in figure 4(a), which plots the vertical velocity of the interface
vmin at the location where h = hmin and at the instant of sheet ejection for various
values of St and δ. As can be seen from this figure, as δ increases (i.e. surface tension
grows), vmin decreases. A better understanding of the dependence of vmin on St and
δ can be achieved by scaling vmin with δ−1/3 and plotting it against St2/3/δ. In these
rescaled variables, the data in figure 4(a) collapse onto a single curve, as shown in
figure 4(b). For small δ (i.e. negligible surface tension), the collapsed curve approaches
an asymptotic value of vminδ1/3 ∼ 0.18, which shows that as surface tension increases
the vertical velocity decreases. Similarly, for large δ, vmin ∼ 12St10/9/δ2, showing
again that the vertical velocity decreases, even approaches zero asymptotically, with
increasing surface tension. Thus, at the moment of overturning in the surface-tension-
dominated regime, the interface has smaller vertical velocity and thus much less
propensity to drain the air out and contact the surface.
A universal transition. Which takes over first, advection (sheet ejection) or surface

tension (spreading on an air film)? This is determined by the effect that sets in
at the largest hmin. To determine this we compare hmin from the surface-tension
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regime (5.1) with the advection regime (5.2); the effects are comparable when
hadvection
min = 60St2/3 ∼ hsurface tension

min = 5δ2/3, or St/δ ∼ (12)−3/2 = 0.024. Mathematically,
when St � δ, advection becomes dominant before surface tension and the interface
overturns ejecting a sheet. While when St � δ, the curvature becomes dominant before
the advection and the drop spreads on a thin film of air. Thus, the two possibilities can
be combined in a universal curve described by

hmin

St2/3 = χ
(
St

δ

)
, (5.3)

where χ(ξ)≈ 60 for large ξ and χ(ξ)≈ 5ξ−2/3 for small ξ , as shown in figure 2(c).
To test this prediction, we solved (2.1)–(2.2) numerically for a wide range of St

and δ. For each set of parameters, we find the air gap at which there is a transition
to either the regime dominated by surface tension (in which the film spreads on an
air layer) or advection (in which a sheet is ejected). If we plot the dimensionless
transition thickness hmin/St

2/3 against St/δ = (ρlVR/µg)
1/3(µgV/σ), we find that data

collapse, as shown in figure 2(c). There is a critical velocity corresponding to a critical
St/δ above which sheet ejection occurs, and below which the film spreads on a thicker
air layer. Figure 2(c) shows that the critical velocity corresponds to St/δ ≈ 0.05–0.2,
close to the range anticipated by the simple argument above. Dimensionally, this
translates to the critical velocity for sheet ejection

Vthreshold = C

(
σ 3

µ2
gρlR

)1/4

, 0.1< C < 0.3. (5.4)

The uncertainty in the prefactor C is related to gradual transition between the
two regimes; C > 0.3 corresponds to the inertial asymptotic regime, while C < 0.1
corresponds to the surface-tension-dominated asymptotic regime.

Even if the drop starts to spread due to surface tension, eventually advection
becomes dominant and causes the interface to overturn. The nature of this delayed
overturning is different from the direct overturning due to advection stated above.
Firstly, the overturning with surface tension occurs with a larger air gap, as shown
in (5.3) and evidenced in figure 2(c). There is another factor lowering the propensity
to contact for the surface-tension-dominated regime. This is measured by the vertical
velocity at the point of minimum air film thickness vmin. The numerically calculated
vertical velocity of approach is shown in figure 4 for various values of St and δ. The
dependence of vmin on the two parameters can be collapsed onto a single curve by
plotting vminδ1/3 versus St2/3/δ. We have not found the detailed explanation for such
a collapse, but it is evident from the raw data in figure 4(a) and the scaled data in
figure 4(b) that the vertical velocity of approach diminishes with increasing surface
tension. In the surface-tension regime, the capillary pressure decelerates the fall of the
drop thus reducing the vertical velocity. The air film drains proportionally slowly and
thus contact may be delayed until much later.

Owing to these two differences between the two regimes, it is plausible that the drop
contacts the surface shortly after sheet ejection in the regime dominated by advection,
while in the surface-tension-dominated regime the air film drainage is significantly
slower and contact is postponed.
Non-continuum effects. Our analysis thus far has assumed that the gas can be

described with continuum hydrodynamics, including the no-slip boundary condition
at the solid surface. When the mean-free path of the gas is of order the gas film
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thickness, the no-slip boundary condition is violated (Maxwell 1879), and there is slip
of the gas at the solid surface. This decreases the wall resistance to flow, facilitating
drainage of the gas and the rupture of the film. The potential relevance of this effect is
quantified by the inverse Knudsen number Kn= hmin/λ, where λ is the local mean-free
path of the gas molecules. Studies (Gopinath, Chen & Koch 1997) have shown that
when Kn < 10 the wall resistance to flow reduces even below Maxwell’s predictions
and facilitates contact.

For the two examples considered above, numerical solutions of (2.1)–(2.2) show that
a 1.7 mm ethanol droplet moving at 1.5 m s−1 skates on a 25 nm air film, compressed
to about 30 atm, and consequently the mean-free path is reduced to about 2 nm,
implying Kn ∼ 12. In contrast, at a speed of 3.74 m s−1, the air film thickness is
only 7 nm when the sheet is ejected, whereas the mean-free path is reduced to
≈ 1.4 nm, implying Kn ∼ 5. The continuum theory therefore breaks down at higher
impact velocities. We expect this to lead to the rupture of the air film and hence
liquid–solid contact, soon after the overturning.

6. Stage II: sheet deflection

We have thus far described a mechanism for the formation of a thin fluid sheet, with
the ejected sheet launching with a velocity parallel to the substrate. Splashing requires
the sheet to be deflected away from the solid surface. The prediction that sheet
ejection at high impact velocities is accompanied by a breakdown in the continuum
theory and hence liquid–solid contact suggests a natural mechanism for such deflection
to occur (figure 5).

Once contact occurs, a viscous boundary layer will develop near the region of
contact. Viscous drag decelerates the liquid in contact with the surface and thus
provides an abrupt resistance to the horizontal flow of the liquid coming from the
centreline of the drop. To conserve flux of volume, the horizontal flow must be
diverted away from the surface. In other words, the viscous boundary layer has a
wall-normal velocity, which scales as the wall-parallel velocity times the aspect ratio
of the boundary layer (we caution the reader that we are not invoking boundary
layer separation, but simply boundary layer growth). This wall-normal velocity directs
individual fluid particles away from the wall. If this diverted flow is directed into the
newly formed lamella, the lamella takes off from the surface and forms a corona.
If this diverted flow is too far from the lamella, or for some reason unable to
cause the lamella to lift off, the drop spreads smoothly on the surface. Within this
framework, the deceleration of the drop by capillary pressure in the surface-tension-
dominated regime obviates the need for the air to drain out from the film, avoids
contacts and thus arrests splashing. In general, splashing can be arrested by any
mechanism that delays liquid–solid contact (e.g. trapping more gas beneath the droplet,
or modifications of intermolecular interaction between the liquid and the surface).

To demonstrate that this mechanism of splashing is consistent with previous
observations, we compare the threshold velocity in (5.4) with the splash threshold.
The experimentally observed threshold velocity for ethanol drops on smooth surfaces
agrees with the prediction, as seen in figure 2(d), for P0 & 50 kPa when
air can be treated as incompressible. The prediction also allows us to rescale
the threshold velocity for water drops (Range & Feuillebois 1998) by a factor
of (σwater/σethanol)

3/4 (ρwater/ρethanol)
−1/4 to agree with ethanol drops of same size.

Thus, our results indicate that the splash threshold at ambient pressure arises from
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Viscous
boundary
layer

No contact Contact

FIGURE 5. (Colour online) A schematic summarizing the postulated mechanism for the
lift-off of the lamella when contacting the surface. (a) A sequence starting from the instant of
overturning (top frame) for the case when the gas film remains intact and the drop does not
contact the surface. The lamella then smoothly spreads along the surface. (b) A sequence of
snapshots for the case when the gas film ruptures or otherwise allows contact. Viscous drag
from the no-slip condition at the contacted region causes the liquid in a boundary layer to
decelerate substantially. The liquid behind this region is then diverted upwards and forced to
flow away from the surface to conserve volume. If this diverted liquid enters the lamella, the
lamella lifts off and leads to a crown.

the competition between surface tension forces and inertia, with inertia promoting
splashing through sheet ejection and surface tension suppressing it.

7. Compressibility
All the dynamics described so far are modified by reducing the ambient pressure.

For example, the location and instant of overturning are modified as the gas pressure
is reduced. For low ambient pressure, the non-dimensional time of sheet ejection is
teject = 18ε1/3, and the non-dimensional x-location of sheet ejection is 20ε1/2, as shown
in figure 6. The transition between incompressible and compressible regimes occurs
for ε ≈ 0.1, which translates to an ambient pressure of 0.5 atm for a 1.7 mm radius
ethanol drop impacting at 3.74 m s−1.

While reducing the ambient pressure changes the quantitative criteria for spreading,
sheet ejection and the threshold for balance between surface tension and inertia, it
more severely modifies the continuum nature of the gas. Intuitively, one expects that
reducing the ambient pressure increases the mean-free path of the gas molecules and
thus enhances non-continuum effects and promotes splashing. While this expectation
is upheld for asymptotically large (P0 & 10 atm) and asymptotically small (P0 . 0.1
atm) ambient pressures, we find that it is not true between these two regimes. In this
intermediate regime, decreasing P0 actually increases the amount of gas trapped in the
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FIGURE 6. (Colour online) (a) The non-dimensional time instant of sheet ejection as a
function of ε. (b) The non-dimensional radius of the rim at which the sheet is ejected plotted
as a function of ε. For an 1.7 mm ethanol drop moving at 3.74 m s−1, the corresponding
dimensional value is shown on the right axis of both panels vs the dimensional ambient
pressure on the top axis.

gas film, avoids contact of the liquid with the wall and thus suppresses splashing. To
see this quantitatively, we consider the dependence of Kn on ambient pressure P0, in
both the asymptotically compressible and incompressible limits, for a 1.7 mm ethanol
droplet impacting at 3.74 m s−1.

The treatment of compressibility and non-continuum effects is most transparent in
dimensional variables, and we transform back to the dimensional form of equations in
this section. The local mean-free path follows from (3.4) as

Knmin = (ρh)min
λ0 ρ0

. (7.1)

Note that Knmin ∝ (ρh)min, the minimum mass of gas trapped in the air film per unit
area. Thus the continuum nature of the gas is maintained for longer if more mass is
trapped in the gas film.

In the incompressible regime, i.e. at large ambient pressure P0, the gas density
and hence the mean-free path are fixed. Thus the mass trapped and Kn depend only
on hmin at the instant of overturning. Substituting hmin from (5.2) into (7.1) implies
Kn = 60RSt4/3/λ0. Since λ0 itself depends on the ambient pressure, to interpret this
expression we substitute λ0 in terms of a standard value at 1 atm, denoted by subscript
atm. This translates to

Knmin ∼ 60RP0St
4/3

λatmPatm
. (7.2)

This implies that Knmin scales linearly with atmospheric pressure P0 at high pressures.
The validity of this regime can be estimated from the next-order correction to the
pressure; at the instant of overturning and sheet ejection p= P0(1 + 0.08/εSt1/3). This
gives the leading-order correction to Knmin and the deviation from the leading-order
behaviour occurs for ε = 0.08St−1/3. For an 3.4 mm diameter ethanol drop impacting
at 3.7 m s−1, the asymptotic regime is valid for P0 > 10 atm.
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Different considerations lead to the pressure dependence of Knmin at small P0. In
this regime, the drainage term in (2.2) becomes negligible and the dominant balance
becomes (ρh)t = 0 or ρh = constant. This means that a certain constant amount of
gas remains trapped in the film, and due to (7.1), Knmin also remains constant. To
determine this constant value, we have to estimate the amount of gas trapped in the
film, which is determined by the early dynamics of the impact (Mandre et al. 2009).
When the drop is sufficiently far from the interface, the gas behaves incompressibly
and the gas pressure builds up as µVR/h2

min. The gas is incompressible as long as this
pressure is less than the ambient pressure but starts to compress when the two become
comparable. This transition determines the amount of gas that becomes trapped to
be ρh = 5.6ρ0 (µVR/P0)

1/2, the constant being determined from numerical solutions.
Substituting this in (7.1) leads to Knmin = 5.6 (µVR/P0)

1/2 /λ0. Again substituting λ0 in
terms of quantities at 1 atm, Knmin asymptotically depends on P0 as

Knmin ∼ 5.6 (µVRP0)
1/2

Patmλatm
. (7.3)

Next-order corrections predict the regime to be valid for P0 < 0.1 atm. Thus Knmin
asymptotically decreases with decreasing gas pressure in both the large-P0 and small-
P0 limit.

Figure 7 plots these two asymptotic behaviours at large and small P0 as black
lines with parameters chosen for a 1.7 mm ethanol drop moving at 3.74 m s−1, which
correspond to the black arrow in figure 2(d). What is striking is that the high-pressure
limit overshoots the low-pressure limit; continuity therefore implies that there must
be an intermediate regime in which Knmin increases by a factor of at least 6 as
the pressure is decreased from 10 atm to 0.1 atm. Indeed, the red asterisk plots the
Knmin corresponding to the numerical simulation carried out above, and lies precisely
between the two asymptotes. The red dotted line indicates an interpolation of the
two asymptotes passing through the numerically computed point. Physically, as the
ambient pressure is reduced, the air film compresses rather than draining and this traps
more air, thus increasing Kn. The increased Knmin suppresses non-continuum effects,
in particular drainage of the gas film, and thus delays contact between the drop and
the solid. Splashing is thereby suppressed. We can also make a quantitative prediction
for the threshold pressure: a critical Knmin of 10 implies that the threshold ambient
pressure for air is approximately 0.4 atm, quite close to the measured splash threshold
(figure 7).

Repeating this procedure for different droplet parameters (St, δ) would give
predictions of the threshold splash pressure as a function of these parameters. We
do not carry out this analysis here owing to the demanding nature of the required
computations. The extremely small size of St necessitates a very fine grid; since
inversion of the Hilbert transform in the governing equations is performed with
a uniform grid in our current numerical algorithm, this pushes the limits of our
computational resources.

8. Discussion and experimental tests
The theory outlined here explain a number of different experimental observations

and suggests new experiments for further validation:
(a) Splash threshold velocity: numerically, (5.4) considered as the threshold for
splashing gives good agreement with experimental measurements reported in the
literature. For example, for approximately a 1.7 mm radius ethanol droplet, (5.4)
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FIGURE 7. (Colour online) The inverse Knudsen number Kn = h/λ at the instant of sheet
ejection as a function of the ambient pressure at a constant impact speed V = 3.74 m s−1

shown by the arrow in figure 2(d). For asymptotically large and small ambient pressure (the
black curve with triangles), Kn decreases with decreasing P0. However, in the intermediate
regime the schematic red dashed curve connecting the two asymptotic regimes shows that
Kn grows with P0 signifying that more air gets trapped as the ambient pressure is reduced.
The asterisk is a result of numerical solution of (3.2)–(3.3) in neither of the asymptotic
regimes. As the ambient pressure decreases, the air in the trapped film finds it easier to
compress than to drain out resulting in this counter-intuitive behaviour. The horizontal band
with the dashed line shows the approximate boundary between continuum and non-continuum
behaviour (Gopinath et al. 1997).

gives a value between 1.25 and 3.75 m s−1, while the experimentally observed value
is about 2.4 m s−1 (Range & Feuillebois 1998; Xu et al. 2005; Bird et al. 2009).
The threshold velocity for a water drop of about the same size (ρl = 1000 kg m−3,
σ = 72 mN m−1) is between 3 and 8.6 m s−1, while the experimentally observed value
is 6.6 m s−1. These points are plotted in figure 2(d) (the experimental threshold for
water is plotted by rescaling it by a factor (σwater/σethanol)

3/4 (ρwater/ρethanol)
−1/4 derived

from (5.4), so that it can be compared with ethanol). We are unable to determine
at this time exactly where in the range given by (5.4) the splash threshold lies; the
precise value will depend on the quantitative details of sheet deflection.

Direct comparison between published experimental correlations and our model is
difficult because none of the published correlations include the physical parameters we
include in our model. None of the investigations prior to 2005 includes any properties
of the surrounding gas, while the work by Xu and co-workers after 2005 (Xu et al.
2005; Xu 2007) invokes a speed of sound in the gas. In our analysis, the gas viscosity
is one of the prime parameters, the dependence on liquid viscosity and gas molecular
weight is qualitative and the speed of sound plays no role. Thus, at this stage the
comparison can only be limited to a discussion of which parameters play a role in the
dynamics.

The drop velocity and the drop radius appear in every correlation and are also varied
significantly in the experiments. The liquid density and surface tension have also
appeared in the correlations but the tested experimental range of variation is limited.
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For example, the correlation by Mundo, Sommerfeld & Tropea (1995) reads

ρ0.75
l V1.25R0.75µ0.25

l

σ 0.5
= constant, (8.1)

while our (5.4), when cast in the same form, reads

ρlV4Rµ2
g

σ 3
= constant. (8.2)

The dependence on R, V , ρ and σ is qualitatively consistent between the two.
Consistency to this degree exists with all previously published correlations which
can be found, for example, summarized by Rein & Delplanque (2008).
(b) Air Pressure: as explained above, our theory of splashing explains the
experimentally observed (Xu et al. 2005) critical ambient pressure in the range of
0.2–0.5 atm to suppress splashing.
(c) Surface roughness: rough surfaces are ubiquitous and the roughness comes in
a range from atomically smooth 0.1 nm to the size of the drop. Surface roughness
facilitates contact by introducing singular features in the boundary of the flow domain.
Our theory predicts that roughness on different scales affects splashing differently.
Even roughness on the nanometre scale can influence splashing behaviour.

Roughness on a scale larger than a few microns, especially manufactured anisotropic
roughness like micro-pillars (Xu 2007), modifies the initial approach of the drop as the
air layer is drained through the pillars. This initial approach without the manufactured
roughness is described in detail by Mani et al. (2010), and this analysis can be used
to estimate the scale of roughness which can influence the approach. The roughness
provides additional channels for air to drain and thus facilitates contact. Since this
contact occurs in the very early phases of the impact, i.e. before the formation of
a high-velocity sheet, and possibly even before the droplet deforms, splashing is
suppressed. On the time scale of 1 ms a sheet is nevertheless formed (Harlow &
Shannon 1967; Schroll et al. 2010), simply due to mass conservation, but is much
slowed down by viscous forces. This slower sheet can be deflected by the textured
roughness to induce splashing (Josserand et al. 2005). We direct the reader to Xu
(2007) for a discussion on the view that the splashing with surface roughness larger
than a few microns leads to a prompt splash. One consequence of this picture is that
the drop will spread anisotropically on a textured surface, because the resistance to
air escaping through the texture is anisotropic. This predicts that the shape of the
spreading sheet will mimic the texture of the surface; we refer the reader to Reyssat
et al. (2010) and Tsai et al. (2010) for a supporting account of this picture.

Even the smoothest surface is rough on the molecular scales. One relevant scale for
roughness to influence the dynamics of drop impact considered in this paper is the air
film thickness. Since the air film thickness can be in nanometres, even the smoothest
surfaces may appear rough for splashing. Unfortunately, the roughness of commonly
available ‘smooth’ surfaces varies considerably. One may obtain molecularly smooth
single-crystal sapphire for a splashing substrate; however we are unaware of splashing
experiments carried out on such surfaces. During the peer-review process, a referee
upon their own initiative contacted a major glass manufacturing company and received
a roughness specification of 300 nm for common window-pane glass. The editor of
this manuscript kindly solicited measurements of the surface roughness of common
substrates using atomic force microscopy measurements of various glass surfaces,
which reveal a peak roughness of approximatey 10 nm (J. R. T. Seddon 2011 and L. A.
Tran 2011, personal communications). Our own collaborators, also using atomic force
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FIGURE 8. (Colour online) Scale of roughness in nanometres that can influence the impact
of (a) a water and (b) an ethanol drop during sheet ejection as a function of the drop radius
and velocity. Below the solid black curve, the δ� 1 approximation is violated, and thus drop
deformation is resisted by surface tension instead of droplet inertia. Above the solid black
curve, intensity denotes the air film thickness at the instant of sheet ejection computed from
(5.3). The thin lines denote contours of constant air film thickness of the value denoted by
the adjoining label. This thickness provides an estimate for the scale of wall roughness to be
significant.

microscopy, independently measured the peak roughness of commonly available glass
slides to be approximately 10 nm (M. Chon, H. van Lengerich & K. S. Breuer, 2011,
personal communication). A variety of measurements on commonly available soda-
lime glass slides reveals a roughness of approximately 10 nm or 50 nm depending
upon the chemical treatment and the manufacturing date (North et al. 2009). In
previous experiments on splashing, various metals were polished smooth up to a
smoothest of 10 nm (Vander Wal, Berger & Mozes 2006). In order to facilitate the
verification of the analysis presented in this paper, and given the wide variation in
the roughness of materials used for the splashing substrate, we present a bound on
the scale of roughness as a function of the experimental parameters below which our
analysis is valid. Of course, the informed reader may be able to predict the dynamics
even if their roughness is larger than this bound, as we do below.

Roughness on the smaller scale promotes contact (Cawthorn & Balmforth 2010) and
hence can induce splashing after a high-speed liquid sheet is formed. Any roughness
on a scale comparable to the air film thickness thus has the potential to rupture the air
film and accelerate contact. The thickness of the air gap at the moment the sheet is
ejected is plotted in figure 8. It can be seen in this figure that, for example, a 2 mm
diameter drop impacting at 1 m s−1 ejects a sheet when the air film is 80 nm thick. If
the surface has a peak roughness of 10 nm, then the air film will not be ruptured on
account of the roughness, but if the roughness is 300 nm, the air film will not stay
intact.

Figure 8 explains why the splash threshold depends on surface roughness as small
as 10 nm (see figure 9 in Range & Feuillebois 1998). The splash threshold for a
1.8 mm radius water drop on a glass surface of roughness 15 nm was measured
by Range & Feuillebois (1998) to be 4.4 m s−1. For these parameters, the air film
thickness of 5 nm can be read from figure 8, which is comparable to the scale of the
roughness. In § 9, we provide more examples of the effect of surface roughness.
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(d) Molecular weight of gas: the continuum nature of the gas is governed by the
mean-free path of the gas molecules, which depends on the gas molecular weight.
Hence the splash threshold should also vary with the molecular weight, consistent with
observations (Xu et al. 2005).
(e) Liquid viscosity: firstly, our theory applies only if the viscous forces in the liquid
are overwhelmed by the liquid inertia, as outlined in appendix A. Once dominated
by the liquid inertia, the viscous forces remain negligible and are not amplified by
the self-similar divergence in (4.5) and (4.6). Thus small liquid viscosity can only
play a role once the liquid touches the solid surface and is decelerated by the no-slip
boundary condition in the deflection stage.

In the deflection stage, this mechanism for splashing also predicts a non-monotonic
dependence on the liquid viscosity. Our mechanism predicts that liquid viscosity plays
a role only after contact, in controlling the boundary layer at the surface that deflects
the sheet. The boundary layer develops to a thickness given by νl/Ueject , where νl

is the kinematic viscosity of the liquid and Ueject is the velocity scale of the liquid
near the point of contact. This thickness is approximately 10 nm for a liquid like
ethanol. This is smaller than the thickness of the sheet when it first appears, which
simulations show to be about 50 nm. We anticipate that both the boundary layer and
sheet thicknesses grow rapidly with time and hence a separate detailed analysis of
the processes is required to make quantitative predictions. Qualitative understanding
can still be obtained and is consistent with experimentally observed non-monotonic
dependence on liquid viscosity (Xu 2007). Increasing the viscosity increases the
thickness of the boundary layer, thereby diverting the fluid more efficiently and
also utilizing more and more the thickness of the lamella. However, for too large
a viscosity (∼10 cP), the boundary layer becomes so thick that the diverted fluid
begins increasingly to miss the lamella. In these more viscous cases, we expect the
ejected lamella to be deflected much later by entraining air at or near the contact line
(Rein & Delplanque 2008).
(f ) Direct visual observation: current visualization techniques are too slow for directly
observing the series of events described in this paper. The fastest videos of the impact
process show that a sheet is ejected (i.e. the interface becomes multivalued near
the point of impact) without any discernible delay from the instant of impact. Most
experimental observations of the ejected sheet are made with a temporal resolution
of no more than 10 µs (Mongruel et al. 2009; de Ruiter, Pepper & Stone 2010).
Fast cameras providing frame rates of 106 frames s−1 are available and have been
used to study the ejecta sheet for droplet impact on liquid films (Thoroddsen 2002;
Thoroddsen et al. 2011), but not on dry solid surfaces. The events that we predict in
this article, however, occur faster than 1 µs.

We expect advances in imaging to make these observations possible in the near
future (Thoroddsen, Etoh & Takehara 2008). The relevant time and length scales
for the sheet formation process presented in (5.2) could then be readily compared
with observations and provide a quantitative verification of the splashing mechanism.
Indirect visualization using interference or total internal reflection on a microsecond
time scale could also help verify the mechanism.

9. Representative illustrations of the framework
Here we apply the framework outlined in this paper to available experimental

observations in order to illustrate its application. This section was inspired by a
referee’s review, who wanted to know if the results of this paper could be applied to,
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and whether they agreed with, the observations of Mongruel et al. (2009) and Rioboo,
Marengo & Tropea (2002). We also add an example from the experiments by Vander
Wal et al. (2006).
(a) Mongruel et al. (2009). Their figure 1(a) shows multiply exposed snapshots
of a 4.85 mm diameter water drop impacting a surface at 1.73 m s−1. Using the
viscosity (1 cSt), density (1000 kg m−3) and surface tension (72 mN m−1) of water,
we first verify that inertia dominates over viscous forces in the drop (as clarified in
appendix A, Re = 8391 means that this is true), as well as over the surface tension
forces (δ = 1.6 × 10−4). This means that the analysis in the first stage of impact (the
sheet formation) is quantitatively applicable. Then we calculate the threshold velocity
from (5.4) for drop spreading versus sheet ejection to be between 2.65 and 7.87 m s−1.
Since the experimental impact velocity is smaller, on a smooth surface the drop would
spread before ejecting a sheet. The thickness of the air film the drop would spread on
can be calculated from the dimensional version of (5.1) to be 9.5 nm. Similarly, the
pressure in the air film can also be estimated to be 25.7 atm, which corresponds to the
mean-free path of the compressed gas film of 2.5 nm, so approximately 4 mean-free
paths fit within the thickness of the film. These numbers essentially find their origin in
the solution of the Navier–Stokes equations.

The roughness of the surface that Mongruel et al. (2009) reported was 10–50 nm.
On account of this roughness being larger than the air film thickness, we would expect
the drop to contact the surface before it starts to spread. The liquid viscosity makes its
influence felt through the no-slip boundary condition and slows down the rapid speed
inside the drop. There is no opportunity for the interface to overturn and a sheet to
be ejected according to the mechanism elucidated in § 5. Sheet ejection nevertheless
occurs due to mass conservation, but is postponed to hundreds of microseconds after
these events. Since contact occurs before the high-speed sheet is ejected, we expect
there to be no splashing immediately by our mechanism, which is consistent with
observations of Mongruel et al. (2009).
(b) Rioboo et al. (2002). Their figure 3 shows multiply exposed snapshots of a
2.73 mm diameter drop of 10 cSt glycerine at an impact speed of 0.96 m s−1

on a glass surface. The roughness of the surface was not mentioned, but a range
of roughness between 3 nm and 120 µm was mentioned encompassing all the
experiments reported in that work. In the absence of a better estimate, we assume that
the roughness of the glass surface that Rioboo et al. (2002) used for the experiment
in figure 3 was about 3 nm. The Reynolds number for this impact is 131 and δ is
1.3 × 10−3, which suggests that inertia dominates over liquid viscosity and surface
tension. The threshold velocity from (5.4) for drop spreading versus sheet ejection
is between 3 and 9 m s−1. The experimental speed is much slower than that, so we
conclude that the drop spreads on a thin film of air before it ejects a sheet. The air
film thickness can be calculated using the dimensional version of (5.1) to be about
50 nm. The pressure in the air film is 4 atm, which corresponds to a mean-free path of
17 nm. Thus about 3 mean-free paths of the air molecules fit within the film thickness.
Since this impact occurs in the spreading regime, the vertical velocity of the interface
is reduced to zero behind the spreading front. The sheet ejection occurs 6.2 µs after
impact. The first exposure Rioboo et al. (2002) make is 365 µs after impact, and then
an overturned interface is seen. A reasonable verification is not possible due to the
slow imaging in the experiments.

The mean-free path of the air molecules is about 3 times smaller than the air film
thickness, and the roughness is about 15 times smaller. While continuum theory is on
the verge of breaking down, the action of surface tension to stop the interface from
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falling postpones contact. Thus, we predict that the air film will remain intact on the
time scale of impact in our analysis. Thus we expect the drop to spread smoothly and
not splash immediately upon impact, which is consistent with what was observed.
(c) Vander Wal et al. (2006). Their tables 2, 3 and 4 list a series of experiments
on a 2 mm diameter drop impacting on an aluminium surface with a mirror polish.
The roughness of the surface was less than 10 nm. As an example, let us consider a
butanol drop (density 810 kg m−3, viscosity 3.5 cSt and surface tension 20 mN m−1)
impacting at 2.17 m s−1. For a 2 mm butanol drop the spreading-sheet ejection
threshold according to (5.4) is between 1.3 and 4 m s−1. Thus the drop velocity of
2.17 m s−1 is in the transition region, and one has to use the universal curve in
figure 2(c). Doing so, one finds that a sheet is ejected when the air film thickness is
18 nm. The gas pressure is 15 atm, which corresponds to a mean-free path of 4 nm.
Thus a high-speed sheet will be ejected in this case before contact.

However, continuum theory is on the verge of being violated with about 5 mean-free
paths of the air molecules fitting in the air film thickness. Also, while the roughness
is lower than the air film thickness, one can estimate the magnitude of the vertical
velocity at the instance of overturning using data from figure 4 to be about 8 m s−1.
Thus, we expect the drop interface to keep approaching the solid surface even after
sheet ejection and soon to contact the surface. This process in our mechanism predicts
an immediate rapid splash. A splash is experimentally reported by Vander Wal et al.
(2006) for this case, but is not classified as either occurring immediately after the
impact or much later.

To summarize, this article proposes through a combination of asymptotic analysis
and numerical simulations that splashing occurs through a two-step process. The first
step involves the ejection of a thin liquid sheet before the drop touches the surface; we
show that this occurs microseconds before contact when the droplet is separated from
the solid surface by tens of nanometres, provided the surface is smoother than this
separation. The second stage of splashing requires this sheet to be deflected away from
the solid surface, a process that requires contact with the surface and the development
of a viscous boundary layer. The two-staged process leads to a splashing threshold
with complicated dependence on surface roughness, liquid viscosity, gas pressure and
gas molecular weight. While some of the details in the second stage remain to be
uncovered, our analysis is quantitatively consistent with experiments performed to date.
Further details can be probed in future experiments.
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Appendix A. Limits on validity due to liquid viscosity and surface tension
In this article, we have assumed a dominant balance between lubrication theory

in the gas and inertial dynamics in the liquid. For a sufficiently viscous liquid, this
dominant balance could be violated at the stage of droplet deformation. In other words
the lubrication pressure in the gas layer µVR/H2 could be balanced by a viscous
stress µlV/

√
RH that resists deformation of the liquid interface, instead of the inertial
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pressure scale ρlV2√R/H. The condition on liquid viscosity to be dominated by inertia
is

µl� ρlVR or Re= ρlVR

µl
� 1. (A 1)

This condition identifies the non-dimensional combination of parameters that govern
the competition between liquid inertia and viscosity; for Re � 1 liquid viscosity
dominates, but for Re� 1, the liquid inertia dominates. In the absence of a numerical
solution including both the liquid inertia and viscosity, it is not possible to determine
the precise value of the transition Re. Typical values of Re are about O(1000) for the
less viscous liquids (water, ethanol, isopropyl alcohol, etc. which have viscosities close
to 1 cSt), and are O(100) for liquids that are 10 times as viscous.

Similarly, the limits of validity of our analysis require that surface tension be initally
negligible (although the governing equations are valid for arbitrary surface tension),
which translate to δ� 1.

Appendix B. Effect of liquid viscosity in Stage I

A thin boundary layer of thickness L
√
ν/UL is formed in the liquid near the

interface to accommodate the tangential stress. The velocity (ub, vb) in the boundary
layer satisfies

ρl(ub,t + ubub,x + vbub,y)=−πx + µlub,yy, (B 1)
ub,x + vb,y = 0. (B 2)

The tangential stress condition is µlub,y = −µhpx/2 at y = h, where y = h is the
interface location and p is the lubrication pressure in the gas. This boundary layer flow
is matched in the far field to the potential flow (u, v) that we have solved for in detail;
i.e. (ub, vb)→ (u, v) as y→∞. Since the interface is advected by the local velocity
ht + ubhx = vb, the extent to which (ub, vb) differ from (u, v) determines whether the
tangential stress effect is important or not.

We have numerically solved (B 1)–(B 2) coupled with our simulations (2.1)–(2.2),
and found that while (u, v) diverge as a result of the similarity solution described
earlier, the difference (ub − u, vb − v) does not grow as rapidly. This is essentially due
to the fact that the tangential stress in the gas is non-zero in only a small region of
length `(t) where the self-similar dynamics are active. Since this region moves away
from the centre of impact at a constant speed crim, successive surface elements are only
exposed to a growing shear stress for a vanishing time. The net momentum transferred
may be estimated as shear stress × time of exposure = µhpx`/crim, which scales
as h1/2

min and vanishes to zero as the singularity is approached. Since the duration of
exposure to the stress vanishes more rapidly than the shear stress grows, the effect of
the tangential stress becomes successively weaker compared to the inviscid dynamics.
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