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Abstract – We develop a general method to study the capillary interactions between objects
of arbitrary shape which float close to each other on an interface, a regime in which multipole
expansion is not useful. The force is represented as a power series in the small distance between
the objects, of which the leading order is finite. For objects with size a much larger than the
capillary length lc, the force scales as

p

a/lc and the prefactor depends on the mean radius of
curvature R at the closest points. After contact the objects roll and/or slide with respect to
each other to locally maximize R and therefore the force. For smaller objects (a � lc), the force
scales as (a/lc)

−1 log(a/lc)
−2, and the prefactor depends only weakly on the shape and relative

orientation of the objects.

Copyright c© EPLA, 2013

Introduction. – Capillary interaction between ob-
jects on a fluid-fluid interface is an important mecha-
nism for the pattern formation and stability of colloidal
self-assembly [1–7], locomotion of meniscus-climbing in-
sects [8–10], and seed dispersal of aquatic plants [11].
Depending on the objects and fluids, the force between the
objects may be attractive or repulsive [12,13]. Previous
studies have focused almost exclusively on the case when
particles are far away from each other, either on an
initially flat [14,15] or curved interface [16,17]. Within
this framework a method based on multipole expansion
assuming an undulating contact line has been widely
adopted [18,19], and the interface deformation is treated as
a linear superposition of the deformation due to individual
particles [20–22]. However, when the density of the
particles is high or as the particles self-assemble they
come very close to each other, so the terms in the
multipole expansion lose asymptotic ordering and the
linear superposition ansatz becomes less useful.

In this paper, we develop a systematic method to
calculate the horizontal capillary force between nearby
interfacial objects and characterize its dependence on the
shape and size of the objects assuming small interface
deformation. The process of determining the force can

(a)Present address: Department of Geology and Geophysics, Yale
University - New Haven, CT 06520-8109, USA.

be decomposed into two steps: the first is determining
the meniscus shape for an object of three-dimensional
geometry and surface wettability using the vertical force
and torque balance, and the second is calculating the
force resulting from the meniscus shape. Since the first
step has received much attention, here we focus on the
second step and show that the horizontal force depends
only on the location of the contact line and not on the
object geometry or the interface deformation. Our goal is
to derive asymptotic expressions for the horizontal force
expanded in the small distance d between the objects. We
guide this derivation using numerical computations of the
surface deformation, assuming without loss of generality
the contact line to be pinned.

The asymptotic expansion of the force is found to be
regular in d, but the coefficients of this expansion depend
non-trivially on the characteristic horizontal size a of the
objects. Two regimes in a emerge depending on their
relation to the capillary length lc, a scale over which the
interface equilibrates to its unperturbed level. In the case
a � lc, the attractive capillary force is concentrated in
the small region of closest approach between the objects.
In the opposite regime a � lc, we resort to a scaling
analysis for the asymptotic form of the coefficients of
the expansion, which depend weakly on the precise shape
of the contact line. These coefficients and the range of
validity of the asymptotic series are determined using
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Fig. 1: (Color online) (a) The horizontal force between thin objects can be approximated by the line integral (2) on the base
curve C. The object has a displacement δ at its center of mass, and a tilt angle α from the xy-plane. (b) Schematic showing
the curve C (see text for its definition) in the xy-plane for two large neighboring objects. In this case the horizontal force is
localized in the shaded region which has a characteristic length lc and

√
Rlc in the x- and y-direction, respectively.

numerical computations, and are found to describe a wide
range of object shapes. Finally, we compare our results to
the case of objects that are far from each other.

Consider several objects on an interface between two
fluids, with the contact line (either pinned or maintaining
a contact angle) at the periphery Γi (i = 1, 2, . . .), as
schematically shown in fig. 1(a). The total force exerted
on the i-th object is

F = σ

∫
Γi

ṙ(s) × N(s) ds − ρg

∫
S

uN dA, (1)

where σ is the surface tension, ρg the gravitational force
density, ṙ(s) the unit tangent vector along Γi, N the
unit normal to the surface pointing away from the liquid,
u the surface displacement from the unperturbed level,
ds the arclength differential, and dA the area element
of the wetted surface S. The first and second integral
in (1) represents the surface tension force and hydrostatic
pressure force, respectively. This expression of the total
force can be rewritten using force balance on an arbitrary
control volume, formed by a vertical cylinder with a planar
base curve C that encloses only one object and not others
(fig. 1(a)). In hydrostatic equilibrium, the net force on the
fluid portion in the control volume is zero. So (1) remains
true if Γi is replaced by C and S by the surface of the con-
trol volume. As we shall demonstrate, choosing carefully
a curve C leads us to a simple expression of the force.

The control volume argument leads naturally to a
proof of the generalized Archimedes’ principle for a single
object [23], and an analogous Newton’s third law for two
arbitrary objects floating on an infinite surface [24]. The
vertical component of (1) can be balanced by an externally
applied force such as gravity or electromagnetic force and
in the process determines the vertical displacement of the
object. The horizontal component of F in (1) can be
approximated to the leading order assuming |∇u| � 1 as

F h ≈ σ

2

∫
C

[(
u2

l2c
− u2

n + u2
t

)
n − 2utunt

]
dt, (2)

where lc =
√

σ/ρg, n and t the unit normal and tangent
vector to C respectively, un = ∇u · n, ut = ∇u · t,
and dt the arclength along C. Using (2) for calculating
the horizontal force requires knowledge of u and its
gradient, and (2) shows that in the small gradient limit
the horizontal force scales with the square of the vertical
displacement. A similar examination of the vertical force
balance reveals that the vertical displacement is in turn
proportional to the external vertical force.

The surface displacement u satisfies the linear free-
surface equation [25–27]

u − l2c∇2u = 0, (3)

which we solve numerically in the exterior of the objects
using a boundary integral method [28]. Formally, a
Dirichlet-Neumann map of the solutions to (3) provides
un using u on the contact line, and use of (2) gives
the horizontal force. This proves that knowledge of the
contact line is sufficient for determining the horizontal
force on the objects. To construct the map, we denote
by x, ζ the position vectors; then un is given by

PV
∫
S

i Γi

(un(x)G − u(x)∇xG · n) ds =
u(ζ)
2l2c

, (4)

where G = − 1
2π K0(|x − ζ|/lc) is the Green’s function

of (3), K0(|x|) the modified Bessel function of the first
kind [29], ∇x the gradient taken on x, and “PV” the
Cauchy principal value. A discretization of (4) and
knowledge of u on Γi yields un numerically. In principle,
(4) allows imposing u = δi(s) on the contact line Γi.
However, different u on different objects leads to a large
gradient of u because of the small distance between them,
and in the limit d → 0 requires a large (infinite in the small
gradient formulation) vertical force and horizontal torque
to maintain the vertical separation. A simple example of
this divergence is seen explicitly for the horizontal force in
our analysis for a � lc (i.e., eq. (7)). Hence we anticipate
u to be approximately equal on touching contact lines, and
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Fig. 2: (Color online) The dimensionless horizontal force
F h/F 0 (where F 0 = σδ2/lc) for disks (◦), side-by-side ellipses
(�) and superellipses of order 4 (�) in the limit d → 0. If
a � lc, the force scales as

p

a/lc for disks and ellipses (solid

lines), and as (a/lc)
1−1/k for superellipses of order k (dashed

line). If a � lc, F h ∼ (a/lc)
−1 log(a/lc)

−2 (dash-dotted line),
with a prefactor depending weakly on the shape of the objects.
The same scaling holds when the objects are allowed to tilt
to satisfy torque balance (×, for both large and small disks).
Inset: the asymptotic expansion (8) for the rescaled force, with
F h0 = σδ2/a log(a/lc)

2, shown as solid curves, is valid up to
d ≈ 2a for small disks. Symbols are the numerically calculated
values: a/lc = 10−4 (�), and 10−2 (+).

take u = δi(s) = δ (constant) as the representative case
to investigate the asymptotic form.

An object whose center displaces the surface by δ
will generally tilt away from the xy-plane by an angle
α (fig. 1(a)). For a given δ, α can be determined by
a horizontal torque balance. Because the gravitational
torque depends on the center of gravity, α may be different
for objects of the same geometry, and so is the force of
interaction. We choose to numerically impose α = 0 or the
center of gravity coinciding with the geometric centroid of
the contact line as representative cases. From numerical
solutions, we observe that the scaling for the horizontal
force does not depend on α, although the prefactors have
a weak dependence (fig. 2).

In fig. 2 the numerically calculated horizontal force
between two disks, ellipses and superellipses of order k
(shape given by xk + yk = ak for an even integer k) is
shown as a function of the size of the objects. As d → 0,
F h may be expanded as an asymptotic series, the leading
term of which sets the scale of the horizontal force. The
objects have only one length scale a (radius, major-axis,
etc.). For large objects (d � lc � a) we find that this
leading-order force varies as

√
a/lc (except for the superel-

lipses, which we describe separately), whereas for smaller
objects (d � a � lc) it varies as (a/lc)−1 log(a/lc)−2. The
reason why different scaling laws arise with respect to a/lc
is that the interface equilibrates over a length scale lc, as
indicated by (3).

Objects much larger than the capillary length. –
First, consider two nearby smooth objects Ω1 and Ω2 that
are much larger than the capillary length (d � lc � a)
and deform the interface δ1 and δ2, respectively. We
temporarily allow δ1 �= δ2 to examine the effect of unequal
displacements. The influence of the objects on each other
is localized in the vicinity of the closest points (indicated
by the shaded region in fig. 1(b)). Indeed, if u′

n denotes the
surface gradient of Ω1 as if Ω2 is absent, then the difference
un−u′

n decays rapidly away from the small shaded region.
Moreover, due to the slenderness of the shaded region we
can simplify (3) using a lubrication-type approximation:
uyy � uxx. Physically, this amounts to decomposing
the meniscus into a series of one-dimensional capillary
bridges between corresponding points on the periphery,
calculating the force due to each individual bridge and
summing to obtain the total force. The solution to (3)
with this approximation is

u(x, y) =
δ1 + δ2

2
cosh [(x − c(y))/lc]

cosh [f(y)/2lc]

−δ1 − δ2

2
sinh [(x − c(y))/lc]

sinh [f(y)/2lc]
, (5)

where f(y) is the distance between the peripheries of the
objects at a given y, and x = c(y) is the centerline of the
gap, with the coordinate system chosen such that c(0) = 0,
f(0) = d and c′(0) = f ′(0) = 0.

In order to simplify (2) we take a special curve C,
composed of x = c(y) and enclosing Ω1 far away such
that the contribution to the line integral (2) outside the
shaded region is negligibly small. On this curve ut � un,
so the horizontal force from (2) and (5) reduces to

F h =
σ

8l2c

∫ ∞

−∞

[
(δ1 + δ2)2sech2

(
f(y)
2lc

)

−(1 + c′(y)2)(δ1 − δ2)2csch2

(
f(y)
2lc

)]
dy. (6)

The first term in the integrand in (6) is attractive and
the second term is repulsive. Near y = 0 we can expand
f(y) = d + b2y

2 + b3y
3 + . . . . For objects with finite

radii of curvature R1 and R2 at the closest points, the
dominant term in this expansion is generically b2 = 1/R ≡
(R1 +R2)/2R1R2 which is the mean curvature. Note that
(6) is valid for any δ1 and δ2 that may vary in y; if they
are constant, the leading-order term of (6) simplifies to

F h ≈ Ψ(2)σ(δ1 + δ2)2

8

√
R

l3c
− πσ(δ1 − δ2)2

4

√
R

d3
, (7)

with Ψ(k) ≡ k1/k
∫ ∞
−∞ sech2(ηk) dη. The force is strongly

repulsive at small d if δ1 �= δ2, diverging as d−3/2. Similar
analysis shows that the vertical force and horizontal torque
diverge as 1/d. Assuming no agency applying such large
forces and torques, as explained in the previous section,
we limit our analysis to δ1 = δ2 = δ.
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Fig. 3: (Color online) (a) The surface gradient un on the
periphery of two disks approaches a constant value away from
the shaded region (see fig. 1(b)) for large objects (a/lc =
8, 14, 23 and 39 from the solid line to the dashed line); (b) un

varies along the whole periphery for small ones (a/lc = 1.0 ×
10−3, 1.7 × 10−3, 4.6 × 10−3 and 1.0 × 10−1 from the solid line
to the dashed line). The arclength s = 0 corresponds to the
closest points. Insets: the collapse of the curves for different
values of a (with ũn = a log(a/lc)un

δ
).

The first term in (7) is the product of the force per unit
length of the capillary bridges scaling as σu2

n ∼ σδ2/l2c ,
and the length scale

√
Rlc in y over which this force is

distributed. This scaling is shown in fig. 3(a) for disks of
various radii a, in which case R = a/2. The curves for un

computed using (4) collapse as a function of the arclength
scaled by

√
a.

Because R is the mean radius of curvature at the
closest points, two side-by-side ellipses experience a larger
attractive force than two tip-to-tip ones do. We have also
observed numerically that the force described in (7) in the
asymptotic limit d � lc is valid up to d ≈ 5lc, beyond the
strict asymptotic criterion.

When d = 0, the objects are in contact, and any unbal-
anced torque causes them to rotate. They slide and/or roll
along each other depending on the contact friction between
them. We propose a mechanism for this relative motion as
follows. The torque acting to rotate Ω1 in the horizontal
plane is given by τ ≈ (σδ2/2l2c)

∫ ∞
−∞ y sech2 (f(y)/2lc) ds.

The leading-order contribution to τ is from the first non-
zero odd power in the expansion of f(y), which will
generically be b3y

3. The effect of this net torque is to
increase R as reflected by the sign of b3: Ω1 will rotate
clockwise (counter-clockwise) if b3 < 0 (> 0). The
rotating torque is zero when b3 ≈ 0, corresponding to a
maximum R. Thus, the equilibrium orientation of objects
in contact is determined by maximizing R and conse-
quently the force of interaction, subject to rolling or sliding
constraints.

Fig. 4: (Color online) Two superellipses of order 4 with rough
periphery starting with asymmetric (a1)–(a3) and symmetric
(b1)–(b3) configuration roll along each other after contact,
while one superellipse and one ellipse with smooth periphery
can slide freely (c1)–(c3). The motion is such that the mean
radius of curvature R at the contact point is maximized
(predictions are shown by colored dots).

This proposal is supported by the experiments focusing
on the rotation of two thin large objects in contact.
Objects with various shapes are laser-cut from a 0.16 cm
thick acrylic sheet. Two such objects are gently released
on the water surface in a 30 cm × 30 cm tank and the
subsequent motion is recorded at 4 frames per second
using a Nikon D90 digital SLR camera. The tank is
illuminated from below by a bright source (an Artograph
LED light pad), and the camera is mounted vertically
above the tank. The exposure is adjusted so that the
background is saturated and the objects appear com-
pletely dark. As expected, the objects move towards
each other due to capillary attraction. We observe two
modes of motion after they contact depending on the
friction between them: rolling and sliding. For objects
with rough periphery the sliding motion is prohibited and
thus the equilibrium orientation depends on the initial
point of contact (asymmetric in fig. 4(a) and symmetric
in (b)); but objects with smooth periphery can slide
freely (fig. 4(c)). We compare the observations with the
predicted equilibrium point of contact and find very good
agreements in all cases.

The above symmetric configuration of the superellipses
corresponds to a special and important case: R is infinite
(so b2 = 0) at the contact point. For such objects with
isolated points of infinite R, the capillary interaction seeks
these points and brings them in contact if the objects
can slide freely. In this case b2 = 0 and the force is
proportional to the lowest non-zero even coefficient bk. In
particular, the force between two side-by-side superellipses
of order k (as in fig. 4(b3)) is Ψ(k)(σδ2/2lc)(a/lc)1−1/k.
The dependence of this force on the size a is therefore
stronger for larger k but always between a1/2 and a for

38001-p4
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Table 1: The size-independent coefficients λij in F h for small disks, ellipses with aspect ratio 4/3 and superellipses of order 4
(see eq. (8)).

��������Shape
λij λ00 λ01 λ10 λ11 λ20 λ21

Disks 0.519 −0.389 −0.106 −0.075 0.010 0.014
Ellipses 0.483 −0.402 −0.091 −0.066 0.008 0.012

Superellipses 0.474 −0.612 −0.090 −0.007 0.007 0.004

smooth objects (fig. 2). In the limit k → ∞, Ψ(k) → 2,
the objects resemble two squares, and F h is proportional
to a, which is the force between two large squares of side
a estimated using a one-dimensional theory.

Objects much smaller than the capillary length.
– For nearby objects that are much smaller than the
capillary length (d � a � lc), we invoke a different scaling
argument motivated by matched asymptotic expansions.
The outer solution (far away from the objects) behaves
as AK0(r/lc) for a suitable constant A, because the
small objects appear as a point force when observed from
length scale lc. As r → a, the outer solution must
be matched with the inner solution which satisfies the
boundary condition u = O(δ). Asymptotic matching on
an intermediate length scale requires that the magnitude
of outer solution on the inner length scale be comparable
to the magnitude of inner solution, i.e. AK0(a/lc) ∝ δ,
which determines A. The slope of the meniscus then
scales as un ∝ −δK1(a/lc)/lcK0(a/lc) which asymptotes
to δ/a log(a/lc) as a/lc → 0. This scaling is verified in
fig. 3(b), where we plot the surface gradient un for different
radii. The curves collapse over two orders of magnitude
in a. Substituting this scaling for un into (2) we get
F h ∼ σδ2/a log(a/lc)2. In fact, we can construct a double
series for F h in d/a and log(a/lc) as

F h =
σδ2

a

∞∑
i=0

∞∑
j=0

λij

(
d

a

)i

(log(a/lc))
−(2+j)

, (8)

where λij are constants depending only on the geometric
shape but not the size of the objects. The values of λij

are obtained by fitting to numerical data and given in
table 1. The expansion in log(a/lc) arises because of the
asymptotic matching [30], similar to the problem of a low-
Reynolds-number flow passing around a sphere or cylinder
at higher orders in the Reynolds number [31,32]. Our
simulations show that the asymptotic force described in
(8) for d � a is valid up to d ≈ 2a (inset of fig. 2), which
we believe is due to the fast convergence of λij .

Long-distance interactions. – In order to make
connections with the long-distance interactions studied
extensively in the literature [3,4,16,19,26], we extend our
theory to far-apart objects (a � d). Using method of
images, we can write the solution to (3) as a multipole

Fig. 5: (Color online) The horizontal force for the long- and
short-distance case can be represented by a single curve, where
F

(m)
h is given by (10); the dashed curve represents (8). Symbols

are numerical results: a/lc = 10−10, 10−8, and 10−6 for stars,
squares, and circles, respectively. Inset: sketch of long-distance
interaction between two disks with radius a and center-to-
center distance D.

expansion:

u(x, y) =
∞∑

n=0

An [Kn(r1/lc) cos(nθ1)

+(−1)nKn(r2/lc) cos(nθ2)] , (9)

where Kn is the n-th order modified Bessel function
of the first kind [29], and r1, r2, θ1 and θ2 are de-
fined in fig. 5 inset. The coefficients An are deter-
mined by the boundary conditions on the periphery of
the objects, which we take to be u = δ on Γ1 and
Γ2. The first two coefficients are A0 = δ/[K0(a/lc) +
K0(D/lc)] and A1 = −aδK1(D/lc)/lcK1(a/lc)[K0(a/lc)+
K0(D/lc)] where D = d + 2a is the distance be-
tween two centers. Note that in this long-distance
limit A0 and A1 can be approximated by δ/K0(a/lc)
and −aδK1(D/lc)/lcK1(a/lc)K0(a/lc), respectively. The
leading-order horizontal force can be calculated as

F
(m)
h =

πaσδ2K1(D/lc)[aK0(a/lc) + 2lcK1(a/lc)]
l3c [K0(a/lc) + K0(D/lc)]2

. (10)

The expression for F
(m)
h asymptotes to a power law in

D when D � lc, which recovers the result assuming
superposition of the displacements [3], and exhibits an
exponential decay in D when D � lc.
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The expression (10) is expected to be valid only for
D � a and inadequately describes the physics when D ≈
2a. This inaccuracy is confirmed by the numerical com-
putations, as shown in fig. 5, where we plot the attractive
force scaled by F

(m)
h as a function of D/2a for values of a

varying by 4 orders of magnitude. The rescaling collapses
the force on a single universal curve. As expected,
the force approaches the behavior described by (10) for
D/2a � 1, but disagrees with the behavior for D/2a =
O(1). The latter regime is described accurately by (8).

Conclusion. – We develop a theory to study the de-
pendence of the horizontal capillary force between nearby
objects on their shape, size, and vertical displacements
from the undeformed interface. The size of the objects
relative to the capillary length governs the nature of their
interaction: for large objects the force is crucially deter-
mined by their shapes via the mean radius of curvature
at the closest points; for small objects the force is not
localized in the vicinity of the closest points, and we derive
a different scaling law based on matched asymptotic ex-
pansions. In both cases, we obtain analytical expressions
of the force, which also reveal how the force depends
on the distance between the objects. The numerical
simulations show that these expressions are valid even
beyond the strict validity of the asymptotic limits, and
thus provide a convenient way to estimate the force. We
also elucidate the mechanism for rotation of touching large
objects from a geometric point of view, potentially useful
for self-assembly of non-axisymmetric objects [1,4,16,33].
Our experiments using not-too-thin objects show excellent
agreements with the theoretical predictions, so we believe
that the consideration of thin objects is a useful approx-
imation to study the capillary interactions of arbitrary
3D objects. Due to the relevance of capillary forces to a
broad range of fields, and the simplicity and generality of
our results, we expect wide applicability of these ideas in
the scientific and engineering community.
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