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Abstract. The problem of the vertical distribution of phytoplankton is considered in the
presence of gravitational settling, turbulent mixing, population growth due to cell division
and a constant rate of loss due to predation and natural death. Nutrients are assumed to be
plentiful so that the production rate depends only on the light available for photosynthesis.
The non-linear saturation of plankton growth is modeled by allowing the attenuation rate
of light to be a linear function of the plankton density. The turbulent diffusivity is assumed
constant which corresponds to a mixed layer depth very much greater than the depth of light
penetration (euphotic depth). It is shown that an exact analytical solution of this non-linear
problem is possible for an idealized model in which the functional dependence of produc-
tion on light intensity is assumed to be a step function. Non-zero solutions are shown to
exist only if the parameters characterizing the system are above a certain critical curve in
a two dimensional parameter space. Numerical simulations using functional forms of the
production curve that resemble the measured photosynthetic response of plankton, show,
that the qualitative behavior of the system is similar to that of the idealized model presented.
Comparisons are made with other analytical approaches to the problem.

1. Introduction

The dynamics of plankton populations may be described [12] by the following par-
tial differential equation for the plankton density φ(z, t) as a function of the depth,
z and time, t :

∂φ

∂t
= Sφ − vp

∂φ

∂z
+ ∂

∂z

(
kT

∂φ

∂z

)
. (1)

The water surface is at z = 0 and the z-axis is directed downwards. The “eddy
diffusivity coefficient” kT , represents the effect of turbulent mixing, and in general
could vary in space and time. The second term on the right hand side accounts for
gravitational settling at a speed vp relative to still water (vp > 0). The net growth
rate S is determined by various environmental factors. The boundary conditions
for φ are those of no flux at the water surface:

[
kT

dφ

dz
− vpφ

]
z=0

= 0, (2)

S. Ghosal, S. Mandre: Northwestern University, Department of Mechanical Engineering,
2145 Sheridan Road, Evanston, IL60208-3111 U.S.A.
e-mail: s-ghosal@northwestern.edu

Key words or phrases: Self-shading – Plankton – Nonlinear – Turbulence



334 S. Ghosal, S. Mandre

and either no flux at the lower boundary (if the water column is of finite depth, ‘h’)[
kT

dφ

dz
− vpφ

]
z=h

= 0 (3)

or vanishing plankton density deep below the euphotic zone (if the water is con-
sidered infinitely deep)

φ(z → ∞) = 0. (4)

A reasonable model for the net growth rate is

S = P(I) − L (5)

where P(I) is the production, which in an eutrophic environment may be paramet-
rized by the local value of the light intensity, I , and L is a constant loss rate due to
grazing by zooplankton and other higher animals in the food chain and due to the
natural death of cells. The function P(I) has been measured for many species [9,
15]. It has the following qualitative behavior:

1. P(0) = 0,
2. P(I) increases monotonically with I until some saturation level characterized

by a value I = Ic,
3. P(I) is approximately constant for I > Ic, sometimes showing a slight decrease

with increasing values of I (photo-inhibition).

One of the earliest analytical models is due to Riley, Stommel & Bumpus
(henceforth RSB) [16], who assumed the form

S =
{

r if z < H ;
−L if z ≥ H

(6)

where ‘H ’, the depth at which the net production is zero, was assumed known.
They looked for steady solutions of (1) with constant kT and the requirement that
φ(z) ≥ 0 for all z ≥ 0. When considered together with the boundary conditions
of zero flux at the surface and vanishing populations at infinite depth, it was found
that physically acceptable (non-zero) solutions exist only if (4rkT )/v2

p > 1. Thus,
if the plankton reproduce too slowly, or sink too fast, or is subjected to too little
turbulence, steady populations cannot be sustained. Analytical solutions were also
shown to provide a reasonable fit to available oceanic data on the depth distribution
of plankton when the parameters were properly tuned. The formulation being lin-
ear, only the shape of the plankton concentration distribution could be determined
but not its amplitude.

A non-linear formulation capable of determining the amplitude was presented
by Shigesada & Okubo (henceforth SO) [17]. They allowed P(I) to be any positive
and non-decreasing function of the light intensity, I . The attenuation of light with
depth was described by

dI

dz
= −µI, (7)

where the total attenuation coefficient µ was assumed to be a linear function of
plankton density: µ = µ0 + µ1φ. The background attenuation coefficient, µ0, and
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the specific attenuation coefficient due to plankton, µ1, are assumed to be constants.
SO showed, that if µ0 is neglected, the system admits a description in terms of an
autonomous system of differential equations, the analysis of whose fixed points
results in a stability criterion representing critical conditions for phytoplankton
blooms analogous to that discovered by RSB.

The formulation of SO was revisited by Ishii and Takagi [8], but they did not
make the assumption µ0 = 0. They proved a theorem showing that the system ad-
mits at most two non-negative solutions, one of which is the trivial (zero) solution
which exists for all parameter values. When both solutions exist, the non-trivial one
is globally stable. Otherwise, the trivial solution is globally stable.

Ebert et al. [2] looked for steady state solutions of the equation (1) assuming
a particular form for the production term P(I) = Iα where 0 < α ≤ 1. This is
a fair representation of the production curve at low intensities, but not at high in-
tensities. They showed that the existence or non-existence of physical solutions for
the steady problem is determined by four dimensionless parameters. In particular,
when the depth of the mixed layer was infinite, the existence of a minimum as well
as a maximum turbulence level for phytoplankton blooms was shown. This was
consistent with studies based on numerical solutions of the primitive equations [6,
7] that used models for P(I) that better represented the observed response.

In this paper we determine the steady state distribution of plankton and critical
conditions for plankton blooms in an idealized model where the dependence of
the production on light intensity, P(I), is a step function; the production rate has a
constant value if the light intensity exceeds a critical intensity and is zero otherwise.
This captures the saturation effect observed in measurements, but not the gradual
increase of P(I) with I at low intensities. The primary advantage of the model
is that the differential equation describing the shape of the plankton concentration
distribution is identical to that describing the “two-layer model” studied by RSB.
The amplitude of the mode is determined by solving a non-linear transcendental
equation. The model is simple enough that a full analytical determination of the
shape of the critical curve as well as the shape and amplitude of the steady plankton
concentration profile is possible.

2. The Two-State Model

Our model is based on a simple “on/off” mechanism for plankton production,
namely,

P(I) =
{

r + L if I > Ic;
0 otherwise

(8)

where Ic is the cut-off light intensity below which production ceases. The depth
dependence of the light intensity is found on integration of (7):

I (z) = I0 exp

[
−µ0z − µ1

∫ z

0
φ dz

]
, (9)
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where I0 is the surface illumination. Evidently, (8) implies (6) if I = Ic at z = H .
Using these conditions in equation (9) we get:

H = H0

1 + σ
H

∫ H

0 φ dz
, (10)

where H0 ≡ µ−1
0 ln (I0/Ic) and σ ≡ µ1/µ0. H0 is clearly the euphotic depth in

the absence of plankton, and H < H0.
It is convenient to work with dimensionless variables.A convenient length scale

in this problem is λ = 2kT /vp, which determines the scale height of the plankton
distribution. In terms of λ, the dimensionless parameters in the problem are

� = H0

λ
, � = L

r
, G = 2rλ

vp

= 4rkT

v2
p

. (11)

Clearly, G is the ratio of the time taken by a plankton to settle through a scale height,
λ/vp, to a characteristic reproduction time, r−1. RSB’s criterion for the existence
of finite plankton populations may be written as G > 1. In the environment, the
parameter G could have a wide range of values, from essentially zero (for example
if there is very little turbulence) to G � 1 for the smallest species of plankton that
have a relatively high reproduction rate and negligible settling speed, vp [3,18,19,
4]. The parameter � could also vary widely in the range (0, ∞), for example as
one goes from turbid waters containing a lot of sediments to very clear water.

On introducing the scaled variables z∗ = z/λ and φ∗ = σφ the equation de-
scribing the steady state distribution of plankton become

d2φ∗
dz2∗

− 2
dφ∗
dz∗

+
{

Gφ∗ = 0 if H∗ > z∗ ≥ 0
−� Gφ∗ = 0 if z∗ ≥ H∗,

(12)

with the boundary conditions

φ′
∗(0) − 2φ∗(0) = 0, (13)

φ∗(∞) = 0, (14)

where a prime denotes derivative with respect to z∗. Since φ∗ itself as well as the
plankton flux φ′∗ − 2φ∗ must be continuous across the euphotic boundary, we must
have the matching conditions

φ∗(H∗+) = φ∗(H∗−), (15)

φ′
∗(H∗+) = φ′

∗(H∗−). (16)

This defines an eigenvalue problem for H∗, and also determines φ∗ upto an arbi-
trary amplitude. This amplitude can be determined from the condition (10), which
in dimensionless form may be be written as

H∗ = �

1 + 1
H∗

∫ H∗
0 φ∗(z∗) dz∗

. (17)
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In the region z∗ > H∗, the roots of the indical equation for the linear differential
equation (12) are

m± = 1 ± √
1 + � G. (18)

The general solution consistent with the boundary condition (14) is therefore

φ∗(z∗) = D exp

(
− z∗

�∗

)
, (19)

where D is an arbitrary constant and we have defined a non-negative constant

�∗ ≡ −m− =
[√

1 + � G − 1
]−1

. (20)

In the euphotic zone, z∗ < H∗, the roots of the indical equation for the three
separate cases must be considered, G < 1, G = 1 and G > 1. In each case, to
ensure a smooth solution throughout the region ∞ > z∗ ≥ 0 we must require

lim
z∗→H∗−0

φ∗(z∗) = lim
z∗→H∗+0

φ∗(z∗) = D exp(−H∗/�∗) (21)

lim
z∗→H∗−0

φ′
∗(z∗) = lim

z∗→H∗+0
φ′

∗(z∗) = − D

�∗
exp(−H∗/�∗). (22)

Case 1. (G < 1):

In this case, both the roots of the indical equation corresponding to the linear dif-
ferential equation (12) in the region H∗ > z∗ > 0 are real

m± = 1 ± √
1 − G (23)

so that the general solution is

φ∗(z∗) = A exp(m+z∗) + B exp(m−z∗) (24)

The boundary condition (13) and the matching conditions (21) and (22) determine
a set of three linear homogeneous equations for determining the constants A, B

and D. The condition for existence of non-trivial solutions of this system can after
some simplification be put in the form

exp
[
(m+ − m−)H∗

] = m−
m+

m−�∗ + 1

m+�∗ + 1
. (25)

Since m+ > m− and H∗ > 0, the left side of this equation is a number greater than
unity while the right side is less than unity. Thus, no steady solutions other than the
trivial one φ∗ = 0 exists in this case.
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Case 2. (G = 1):

Here we have a degenerate case where the indical equation has only a single root,
m = 1. A second solution z∗ exp(z∗) may be determined by direct substitution. The
general solution in the zone z∗ < H∗ is therefore

φ∗ = (A + Bz∗) exp(z∗). (26)

Using the boundary condition (13) and the matching conditions (21) and (22) we de-
termine a set of three linear homogeneous equations for A, B and D, the solvability
condition for which may be put in the form[

1 +
(

1 + 1

�∗

)
(1 + H∗)

]
exp(H∗) = 0. (27)

This equation has no solutions for H∗ > 0, thus again only the trivial solution
φ∗ = 0 is allowed.

Case 3. (G > 1):

In this case, the roots of the indical equations corresponding to the linear differential
equation (12) in the euphotic zone z∗ < H∗ are complex conjugate:

m± = 1 ± i
√

G − 1 (28)

so that the general solution may be written as

φ∗(z∗) = exp(z∗)
[
A cos(

√
G − 1 z∗) + B sin(

√
G − 1 z∗)

]
. (29)

Using the boundary condition (13) and the matching conditions (21) and (22) we de-
termine a set of three linear homogeneous equations for A, B and D, the solvability
condition for which system may be put in the form

cot(H∗
√

G − 1) = G/ρ − 1√
G − 1

(30)

where for convenience of notation

ρ = 2 + 1

�∗
= 1 + √

1 + �G. (31)

The transcendental equation (30) clearly has a denumerably infinite number of
roots, however, the requirement that (29) be positive throughout the euphotic zone
requires that we choose the root such that H∗

√
G − 1 lies in the interval (0, π).

Thus, the solution for the eigenvalue H∗ in the two-layer model may be written as

H∗ = θ∗√
G − 1

(32)

where π ≥ θ∗ ≥ 0 is such that

cot θ∗ = G/ρ − 1√
G − 1

. (33)
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When H∗ satisfies the solvability condition (32), the constants A, B and D may
be determined up to a constant multiplicative factor. This factor may be expressed
in terms of the integrated plankton density �∗ = ∫ ∞

0 φ(z∗) dz∗, so that, the vertical
profile of phytoplankton may be expressed concisely in the following form:

φ∗(z∗) =
{

Aep exp(z∗)
[√

G − 1 cos(z∗
√

G − 1) + sin(z∗
√

G − 1)
]

if z∗ ≤ H∗;
Aap exp

(
− z∗

�∗

)
if z∗ > H∗.

(34)
where

Aep = �∗
(G2 − 2ρG + ρ2G)1/2

(ρ + �∗G)
√

G − 1 exp
(

θ∗√
G−1

) , (35)

Aap = �∗
G

ρ + �∗G
exp

[
1

�∗
θ∗√

G − 1

]
. (36)

On substitution of (34) into (10) a relation is obtained between the euphotic zone
height H∗ and the integrated plankton density �∗ in the two-layer model:

�∗ =
(

1 + G�∗
ρ

)
(� − H∗) (37)

The selection of the principal root, θ∗, in the transcendental equation (33) was made
such that the amplitude of φ∗ should not change sign in the interval ∞ > z∗ ≥ 0.
We now enforce the condition that this amplitude actually be non-negative, the
necessary and sufficient condition for which is �∗ ≥ 0. Using (37) and (32), this
condition may be expressed as the requirement

� ≥ �c (38)

where

�c = θ∗√
G − 1

. (39)

The amplitude, (37), of the mode, may also be expressed as

�∗ =
(

1 + G�2∗
1 + 2�∗

)
(� − �c) (40)

3. Discussion

RSB correctly concluded that for steady non-negative solutions, one must have
G > 1. However, as we showed here, this is only a necessary condition includ-
ed in the more general requirement that the pair of values (G, �) characterising
the system should lie above the critical curve (39) as shown in Figure 1. Since
�c ∝ 1/

√
G − 1 for G → 1 and �c ∝ 1/

√
G as G → ∞, the curve G�c as a

function of G approaches ∞ at both limits G → 1 and G → ∞ with a positive
minimum value at some intermediate G. Our analysis only provides the conditions
for the existence of a non-trivial solution (φ∗ = 0 is always a solution), however the
theorem of Ishii and Takagi [8] guarantees that this solution is globally attracting.
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Fig. 1. Critical curves for existence of non-zero phytoplankton distributions for � = 0 (low-
er), � = 1 (middle) and � = ∞ (upper). Trajectories corresponding to changing surface
illumination (ROS), changing reproduction rate (TOU) and changing turbulent diffusivity
(QOP) are also shown.

Figure 2 shows the phytoplankton concentration profile corresponding to a
characteristic point ‘U’, shown in Figure 1 on the G − � parameter space (with
� = 1). The solid line is computed from the analytical formula (34) for the plankton
profile using the expression (40) for the amplitude. The symbols in Figures 2 and
3 correspond to numerical simulations and are discussed later in this section. The
profile, which is typical of the two-layer model, shows an exponential decay to zero
at infinite depth.

The effect of varying one or more of the control parameters r , kT , vp, H0 and L

of the problem has the effect of moving the system along certain trajectories in the
parameter space as shown in Figure 1. Thus, for example, if the production rate r is
varied holding the ratio L/r and the values of all of the other physical parameters
fixed, the system moves along the trajectory TOU as shown in Figure 1. Similarly,
ROS corresponds to changing the surface illumination holding all other parameters
fixed, and, QOP corresponds to varying the turbulent diffusivity at constant val-
ues of the remaining parameters. In each case, there is a bifurcation from the zero
solution to a finite one on crossing the critical curve at the point ‘O’.

A particularly interesting physical result is obtained upon considering the hor-
izontal trajectory QOP in Figure 1 corresponding to increasing the turbulent dif-
fusivity kT , starting from a very small value, while holding the other parameters
fixed. Figure 3 shows the variation of the dimensionless amplitude �∗, as the system
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Fig. 2. Steady state plankton concentration profile corresponding to point U in Figure 1
(G = 3, � = 1.83) for � = 1; 1D simulation with α = 1 (•), 1D simulation with α = 10
(◦), theoretical profile for the two-layer model (α = ∞) as predicted by equation (34) (—).

moves along such a trajectory which corresponds to G� = G0�0 where (G0, �0)

are the co-ordinates of the point ‘O’. The fact that G�c as a function of G has a
single minimum has some interesting consequences. First, any line G� = G0�0 in
the parameter space that intersects the critical curve once, will intersect it again for
the second time. That is, as the turbulent diffusivity kT increases from very small
values, there exists a minimum value kmin

T corresponding to the first intersection
with the critical curve, when the non-zero solution bifurcates from the zero solution.
The amplitude, �∗, of this non-zero solution then increases, reaches a maximum,
decays again, and finally becomes zero at the second crossing of the critical curve,
when kT = kmax

T , the maximum turbulent diffusivity for which a steady non-zero
solution can exist. This behavior is seen in Figure 3. A second consequence of the
shape of the critical curve is that if G� < Gm�m, where (Gm, �m) corresponds to
the minimum of the curve G�c as a function of G, then, steady non-zero plankton
distributions cannot exist for any value of kT . Therefore,

G� = 2rH0

vp

= 2r

µ0vp

ln

(
I0

Ic

)
≥ Gm�m (41)

is a necessary condition for the existence of stable plankton populations, irrespec-
tive of the level of turbulence. This relation gives an absolute minimum of surface
illumination I0, below which a stable plankton population can never be sustained.
Here Gm and �m are two numbers, generally depending on �, that can easily be
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Fig. 3. Depth integrated plankton density, �∗ as a function of G when the turbulent diffu-
sivity alone is varied (line QOP in Figure 1, � = 1); 1D numerical simulation with α = 1
(•), 1D numerical simulation with α = 10 (◦), theoretical amplitude for the two-layer model
(α = ∞) as predicted by equation(40) (—).

determined graphically. The condition is only necessary for the existence of a sta-
ble population; it is not sufficient, as kT also has to lie between the minimum and
maximum levels kmax

T > kT > kmin
T for stable plankton populations to exist. The

existence of such a “turbulence window” for phytoplankton blooms was noted ear-
lier by Huisman et al. [7] based on numerical investigations of the basic equations
using several different models for P(I). This was later shown analytically by Ebert
et al. for the model P(I) ∝ Iα when the mixed layer is infinitely deep [2]. It is
reassuring to note, that the two-state model, Ebert et al.’s power law model and
numerical simulations presented in [6,2] as well as in the current work, indicate
that the qualitative nature of the conclusions are unaffected by the specific choice
of the function P(I). The advantage of working with the two-state model is that it
leads to a mathematical development that is considerably simpler than any of the
alternate analyses.

The requirement of a minimum turbulence level may be understood from the
following physical argument. Imagine a single plankton cell released from the
water surface. In the absence of turbulence, this individual cell drifts downward
and at random times (with a certain probability) divides into two cells. Each of
these daughter cells continues to drift down and divide just like the parent cell,
until the cluster of cells all reach the euphotic boundary at the same time and cell
division stops. Clearly, a steady state distribution cannot be sustained no matter
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how frequently the cells divide. Turbulence however disperses the cluster and al-
lows individual daughter cells to rise up in the water column so that the sinking and
eventual extinction of the phytoplankton colony is no longer a foregone conclusion.
The existence of a maximal level of turbulence could be understood by considering
the global equilibrium in the entire euphotic layer. The production in this layer due
to cell division is proportional to the total number of cells in it. At equilibrium,
this must balance the sinking loss as well as the loss due to the turbulent flux of
plankton through the euphotic boundary. If this latter loss is too high, the popula-
tion cannot be maintained, and hence the existence of a maximal turbulence level.
Thus, turbulence is both a help and a hindrance, and, the plankton population is
maintained through a delicate balance between the benefit gained from turbulent
suspension and the losses incurred as a result of turbulent flux of viable cells into
the dark aphotic zone.

3.1. Numerical Simulations

In order to investigate whether the qualitative conclusions reached above has wid-
er validity beyond the simple two-state model that we have analyzed, numerical
simulations were performed on equation (1) assuming φ = φ(z, t). The plankton
production was modeled by

P(I) = r + L

1 + tanh α

[
tanh α + tanh

{
α

(
I

Ic

− 1

)}]
(42)

where α > 0 is a parameter. Clearly, for α � 1, P(I) reduces to our two-state
model, equation (8), whereas for α ≈ 0, P(I) ∼ I as in [2].

The numerical method used in the simulations is second order central difference
for z derivatives coupled with a second order Runge Kutta predictor-corrector time
stepping scheme. Zero boundary conditions are enforced at the bottom of the com-
putational domain which is taken large enough so that at steady state the theoretical
plankton concentration at the bottom grid point would be essentially zero. At the
top most grid point, the second order central differencing scheme is replaced by a
second order one sided derivative, and the no flux boundary condition is imposed.
Simulations were run for α = 10 and α = 1.

Figure 2 shows converged solutions for the plankton concentration distribution
for parameters corresponding to the point U on the G−� parameter space of Fig-
ure 1 and � = 1. The solution for α = 10 is indistinguishable from the theoretical
distribution, equation (34), obtained from the two-state model (α → ∞). Further,
the solution for α = 1, is qualitatively similar. The simulations were started with
φ set to zero as the initial condition. The perturbation provided by the numerical
round off was sufficient to make the solution leave the unstable branch and converge
on the steady state distribution shown in the figure.

Each symbol in Figure 3 corresponds to a converged numerical simulation with
‘machine zero’ initial conditions. The theoretically predicted integrated plankton
profile given by equation (40) is compared with the numerically computed one
using the steady state plankton profile. Once again, the result of the simulation with
α = 10 is practically indistinguishable from the prediction using the layer model,
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moreover, the simulations with α = 1 give results that are qualitatively very similar
to that of the layer model.

4. Conclusions

A simple two-state model for the dependence of phytoplankton production on light
intensity is proposed. It leads to a differential equation identical to that considered
by RSB but with the important difference that the “euphotic zone depth” which in
turn determines the amplitude of the steady state plankton profile is determined as
an eigenvalue of the problem.

The two-state model admits a closed form analytical solution that illustrates
some interesting dynamical characteristics of the phytoplankton system. In the
steady state, the depth integrated plankton profile is either zero or is a finite value,
depending on three dimensionless combinations of parameters G, � and �. Either
one or the other of these two solutions is stable depending on whether (G, �) is
on one or the other side of a one parameter family of critical curves parametrized
by �. The particular shape of the critical curve has some interesting consequenc-
es such as the existence of a turbulent diffusivity window kmax

T > kT > kmin
T

where stable populations can exist, with the total number of cells in a column of
water reaching a peak at some well defined intermediate value and dropping to
zero at either limits of the interval. In particular, if the illumination at the surface
is sufficiently reduced, stable populations will not exist for any turbulent diffusiv-
ity. These results may be physically understood from the dual role that turbulence
plays as a mechanism for suspension of micro-organisms in the euphotic zone as
well as an agent for enhancing the flux of micro-organisms into the aphotic zone
through turbulent diffusion. Essentially identical conclusions were reached quite in-
dependently by Huisman and co-authors [2,6,7] through numerical simulations and
an analysis of the power law model for the dependence of production on light
intensity 1. The two-state model has the advantage that it leads to the simplest
mathematical task: solving an eigenvalue problem for a linear second order ordi-
nary differential equation with constant coefficients.

Observations from real ecosystems are usually complicated by a host of mecha-
nisms not considered in this simple model. Thus, the turbulent diffusivity is usually
depth dependent, indeed, the mixed layer depth certainly plays a very important
role in determining the vertical distribution of plankton [10,20]. It may be assumed
constant only in the special case where the mixed layer depth happens to be very
much larger than the euphotic zone depth. In cases where the mixed layer depth is
comparable to the euphotic depth, the current model can be extended by introduc-
ing a “turbocline” at a depth z = Ht below which, kT = 0 [11]. Nutrient depletion
and the dynamics of nutrient transport and regeneration are probably the dominant
mechanism that determines plankton profiles in pelagic environments [1]. Graz-
ing by zooplankton can lead to interesting time dependent behavior in the coupled
predator-prey system and cannot always be modeled as a constant loss rate [22,13].

1 The authors are grateful to an anonymous referee for bringing references [2,6,7] to their
attention
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The “eddy diffusivity” is an ad hoc way of describing the statistical effect of
the resultant of all the eddying motions of a turbulent fluid on a scalar, which in
this case is the plankton concentration. It is however not an entirely satisfactory
description [21,14]. A more direct approach would be to solve the full equations, of
which (1) represents an approximate homogenization. This equation, assuming the
plankton size to be very much smaller than the Kolomogorov length and neglecting
multi-particle interactions, is of course

∂φ

∂t
+ u · ∇φ = Sφ − vp

∂φ

∂z
+ k∇2φ (43)

where k is the molecular diffusivity and the turbulent velocity field u is determined
by solving the Navier-Stokes and continuity equations. Numerical solutions of (43)
at moderate Reynolds numbers have been computed and reported elsewhere [5].
Here we only wish to note that replacing the eddy diffusivity by such a detailed
computation of the underlying flow field does not change the principal conclusions
of the simplified analysis that relies on the eddy diffusivity description of turbulent
diffusion.
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